首页> 外文期刊>Electrochimica Acta >Rate performance enhancement of lithium-ion battery using precise thickness-controllable-carbon-coated titanium dioxide nanowire array electrode via atomic layer deposition
【24h】

Rate performance enhancement of lithium-ion battery using precise thickness-controllable-carbon-coated titanium dioxide nanowire array electrode via atomic layer deposition

机译:采用原子层沉积使用精密厚度可控 - 碳涂覆的二氧化钛二氧化钛锂离子电池的速率增强

获取原文
获取原文并翻译 | 示例
           

摘要

An atomic layer deposition (ALD) of ultra-thin and conformal carbon shell is demonstrated as a powerful technique for enhancing the rate performance of a nanostructured Li-ion battery (LIB) electrode. Structuring conformal-carbon-shell-coated TiO2 nanowire (NW) arrays with precise thickness control can be realized via the ALD process using a CBr4 precursor and a hydrogen plasma reactant. The vertically-aligned TiO2 NWs grown via hydrothermal and annealing method are used as a complex nanostructure anode. Ultrathin carbon-shell-coated (thickness 1-2 nm) TiO2 NW anodes show long-term cyclability and excellent rate-performance (capacity retention of 96.5% after 500 charge/discharge cycles and 105 mAh g(-1) at 30 C, 1 C = 230 mA g(-1)) whereas thick carbon-shell-coated (thickness 6-7 nm) TiO2 NW anodes exhibit lower rate capability than the bare TiO2 NW anode, which is attributed to fast charge and mass transport of conformal and ultrathin carbon shell. This carbon coating method by ALD can be potentially applied to various nano-sized electrodes with complicated structures with uniform and precise thickness control coating. (C) 2020 Elsevier Ltd. All rights reserved.
机译:超薄和共形碳壳的原子层沉积(ALD)作为提高纳米结构锂离子电池(LiB)电极的速率性能的强大技术。通过使用CBR4前体和氢等离子体反应物,可以通过ALD工艺实现具有精确厚度控制的共形 - 碳壳涂覆的TiO2纳米线(NW)阵列。通过水热和退火方法生长的垂直对准的TiO 2 NWS用作复合纳米结构阳极。超薄碳壳涂覆(厚度1-2nm)TiO2 NW阳极显示长期可自由性和优异的速率 - 性能(500次充电/放电循环后的96.5%的容量保留,105mAhg(-1), 1 c = 230 mA g(-1),而厚的碳壳涂覆(厚度6-7nm)tiO2 nw阳极表现出比裸滴的稳定性更低的速率能力,其归因于保形的快速充电和质量传输和超薄碳壳。该通过ALD的该碳涂布方法可以潜在地应用于各种纳米尺寸电极,具有均匀和精确的厚度控制涂层的复杂结构。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号