首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >First-Principles and Thermodynamics Study of Compositionally Tuned Complex Metal Oxides: Cation Release from the (001) Surface of Mn-Rich Lithium Nickel Manganese Cobalt Oxide
【24h】

First-Principles and Thermodynamics Study of Compositionally Tuned Complex Metal Oxides: Cation Release from the (001) Surface of Mn-Rich Lithium Nickel Manganese Cobalt Oxide

机译:组成调谐复合金属氧化物的第一原理和热力学研究:富含Mn的锂镍锰钴氧化物(001)表面的阳离子释放

获取原文
获取原文并翻译 | 示例
       

摘要

Compositional tuning of nanoscale complex metal oxides (CMOs) can lead to enhanced performance and favorable properties for a variety of energy-related applications. However, investigations of the nanoscale CMOs used in energy storage technologies demonstrate that these nanomaterials may have an adverse biological impact, highlighting a fundamental knowledge gap between nanomaterial design and the structure and properties at the end of life. CMO nanomaterials can enter the environment due to improper disposal, where they undergo subsequent (as of yet poorly understood) nanoscale transformations that may affect biological response and, ultimately, environmental fate. This points to the need for studies at the nano-bio interface that can be used to shape rules for the redesign of CMOs: materials that are are potentially more benign by design and serve as examples of sustainable nanotechnology. The example given here is to enrich lithium nickel manganese cobalt oxide, Li-x(NiyMnzCo1-y-z)O-2 (NMC), with Mn to create a family of materials that are less expensive and potentially less toxic to a wide range of organisms. In this paper, we investigate the structure and electronic states of Mn-rich NMC at the density functional theory (DFT) level to elucidate the interplay of redox properties, oxidation state, and coordination environment of a compositionally tuned CMO. We find that the oxidation states of Ni and Co remain mostly unaffected while Mn exists as both Mn2+ and Mn4+. Our models show that the ratio of Mn2+ and Mn4+ varies with changes in the coordination environment, such as the identity of neighboring atoms and surface OH group coverage. The surface metal release properties of Mn-rich NMC compositions are predicted using a DFT + solvent ion model and show that Mn-rich NMC compositions are inherently more prone to dissolution than NMC and that this is attributed to the changes in oxidation state of the transition metals in Mn-rich NMC.
机译:纳米级复合金属氧化物(CMOS)的组成调谐可导致各种能源相关应用的性能和有利性能。然而,用于储能技术中使用的纳米级CMO的研究表明,这些纳米材料可能具有不利的生物影响,突出纳米材料设计与寿命结束时的结构和性质之间的基本知识差距。 CMO纳米材料可以由于所处理不当而进入环境,在那里它们随后接受(如尚未理解的)纳米级变换,可能影响生物反应,最终环境命运。本指出了在纳米生物界面上进行研究的需求,可用于塑造CMOS重新设计规则:潜在的良性设计,作为可持续纳米技术的例子。这里给出的例子是富含锂镍锰钴氧化物,Li-x(NiymnZCO-YZ)O-2(NMC),用Mn制造一系列更便宜的材料,潜在对广泛的生物体且潜在的毒性较小。在本文中,我们研究了密度泛函理论(DFT)水平的富含Mn的NMC的结构和电子状态,以阐明氧化还原性质,氧化状态和组成调谐CMO的配位环境的相互作用。我们发现Ni和Co的氧化状态大部分不受影响,而Mn存在于Mn2 +和Mn4 +。我们的模型表明,MN2 +和MN4 +的比率随着协调环境的变化而变化,例如相邻原子和表面OH组覆盖的标识。使用DFT +溶剂离子模型预测Mn的NMC组合物的表面金属释放性能,并表明MN的NMC组合物本质上比NMC更容易溶解,并且这归因于过渡的氧化状态的变化富含Mn的NMC金属。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号