首页> 外文期刊>Journal of Physics. Condensed Matter >Universal transport signatures in two-electron molecular quantum dots: Gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions
【24h】

Universal transport signatures in two-electron molecular quantum dots: Gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions

机译:两电子分子量子点中的通用传输特征:门可调洪德定律,屏蔽不足的近藤效应和量子相变

获取原文
获取原文并翻译 | 示例
           

摘要

We review here some universal aspects of the physics of two-electron molecular transistors in the absence of strong spin-orbit effects. Several recent quantum dot experiments have shown that an electrostatic backgate could be used to control the energy dispersion of magnetic levels. We discuss how the generally asymmetric coupling of the metallic contacts to two different molecular orbitals can indeed lead to a gate-tunable Hund's rule in the presence of singlet and triplet states in the quantum dot. For gate voltages such that the singlet constitutes the (non-magnetic) ground state, one generally observes a suppression of low voltage transport, which can yet be restored in the form of enhanced cotunneling features at finite bias. More interestingly, when the gate voltage is controlled to obtain the triplet configuration, spin S = 1 Kondo anomalies appear at zero bias, with non-Fermi liquid features related to the underscreening of a spin larger than 1/2. Finally, the small bare singlet-triplet splitting in our device allows fine-tuning with the gate between these two magnetic configurations, leading to an unscreening quantum phase transition. This transition occurs between the non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the triplet phase, where the partially compensated (underscreened) moment is akin to a magnetically 'ordered' state. These observations are put theoretically into a consistent global picture by using new numerical renormalization group simulations, tailored to capture sharp finite-voltage cotunneling features within the Coulomb diamonds, together with complementary out-of-equilibrium diagrammatic calculations on the two-orbital Anderson model. This work should shed further light on the complicated puzzle still raised by multi-orbital extensions of the classic Kondo problem.
机译:我们在这里回顾了在没有强自旋轨道效应的情况下双电子分子晶体管物理学的一些普遍方面。最近的一些量子点实验表明,静电背栅可用于控制磁能级的能量分散。我们讨论了在量子点中存在单重态和三重态的情况下,金属触点与两个不同分子轨道之间通常不对称的耦合如何确实导致门可调的洪德定律。对于栅极电压,使得单线态构成(非磁性)基态,通常会抑制低压传输,但仍可以以有限偏压下增强的共隧道特性的形式恢复低压传输。更有趣的是,当控制栅极电压以获得三重态配置时,自旋S = 1 Kondo异常出现在零偏压处,与非自旋液体特征相关的自旋筛分不足大于1/2。最终,我们设备中的裸露单线态-三重态小分裂允许在这两种磁性构型之间对栅极进行微调,从而实现了非屏蔽量子相变。这种过渡发生在非磁性单重态阶段和三重态阶段之间,非磁性单重态阶段发生了两阶段的近藤效应,三重态阶段发生了部分补偿(欠屏蔽)的力矩类似于磁性“有序”状态。通过使用新的数值重归一化组模拟,这些观测值在理论上被置于一致的全局图中,这些模拟量身定制以捕获库仑钻石中的尖锐有限电压共隧穿特征,以及在两轨安德森模型上的补充失衡图解计算。这项工作应进一步阐明经典近藤问题的多轨道扩展仍然引起的复杂难题。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号