...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Reaction pathways for bio-active species in a He/H2O atmospheric pressure capacitive discharge
【24h】

Reaction pathways for bio-active species in a He/H2O atmospheric pressure capacitive discharge

机译:He / H2O大气压电容放电中生物活性物质的反应途径

获取原文
获取原文并翻译 | 示例
           

摘要

Helium/trace gas atmospheric pressure radio-frequency (rf) capacitive discharges have increasing biomedical applications. We have performed a principal pathway analysis for a chemically complex, bounded He/H2O atmospheric pressure, planar capacitive discharge, with a discharge gap of 0.5 mm and a power of 0.85 W cm(-2) at 13.56 MHz (n(e) approximate to 1.6 x 10(17) m(-3)). The discharge is embedded in a larger volume in which the H2O fraction is controlled to be 0.001. The generation and loss pathways for eleven species of interest for discharge maintenance and biomedical applications have been determined. The production and consumption pathways of He*, H2O, H11O5+ and electrons are found to be tightly coupled. The metastable He* generated by electron impact excitation of He is mostly consumed by Penning reactions with H2O, followed by subsequent three-body association reactions with H2O, to form the dominant positive ion, H11O5+. The main loss pathways for H11O5+ are ion cluster fragmentations at the wall, which are important generation pathways for H2O. The generation and loss pathways for electrons are almost the same as for H11O5+. OH and H2O2 generation and loss are strongly coupled, and they are important intermediate species in the generation pathways for the purely O-containing bio-active species: O-2(a), O, O-3 and O*. The generation and loss pathways for the latter four species were found to be strongly coupled by volume and surface processes, with O-2 as an important precursor. The generation of O-2 from H2O involves H2O2 as a key long-lived intermediate.
机译:氦气/痕量气体大气压射频(rf)电容性放电在生物医学领域的应用日益广泛。我们对化学复杂的有限制的He / H2O大气压,平面电容放电,在13.56 MHz(n(e)近似)下的放电间隙为0.5 mm,功率为0.85 W cm(-2)进行了主要路径分析至1.6 x 10(17)m(-3))。放电被嵌入更大的体积中,其中H2O分数控制为0.001。已经确定了用于放电维持和生物医学应用的11种目标物种的产生和损失途径。发现He *,H2O,H11O5 +和电子的产生和消耗途径紧密耦合。由He的电子碰撞激发产生的亚稳态He *主要被与H2O的Penning反应消耗,随后与H2O进行三体缔合反应,形成主要的正离子H11O5 +。 H11O5 +的主要损失途径是壁上的离子簇碎裂,这是H2O的重要产生途径。电子的产生和损失途径与H11O5 +几乎相同。 OH和H2O2的生成和损失紧密耦合,它们是纯含氧生物活性物质O-2(a),O,O-3和O *的生成途径中的重要中间物质。发现后四个物种的生成和损失途径通过体积和表面过程紧密耦合,其中O-2是重要的前体。由H2O生成O-2涉及H2O2作为关键的长寿命中间体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号