首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation
【24h】

A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

机译:用于粒子操纵和分离的微细加工技术和介电泳微器件综述

获取原文
获取原文并翻译 | 示例
           

摘要

The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP.
机译:过去十年来,片上实验室(LOC)设备的开发引起了越来越多的兴趣。 LOC设备旨在实现生物和化学分析的小型化,集成化,自动化和并行化。在生物学,化学和医学领域中,一种应用是有效且准确地操纵和分离水溶液中的微米级和纳米级颗粒的能力,尤其吸引人。在微流体微系统中已开发和实现的用于颗粒处理和分离的技术(例如机械,惯性,流体动力学,声学,光学,磁性和电学方法)中,介电泳(DEP)可能因其而被证明是最受欢迎的技术。无标签的性质,操作中性生物颗粒的能力,具有高选择性和灵敏度的分析能力,与LOC设备的兼容性以及与电子设备的简便直接接口。 DEP效果所需的空间电非均匀性可以通过在微通道内对微电极阵列进行构图或在微通道内放置绝缘障碍物并弯曲微通道来生成。已经开发,制造并成功地使用了多种基于电极和绝缘体的DEP微型设备来操纵和分离生物粒子(即DNA,蛋白质,细菌,病毒,哺乳动物和酵母细胞)。这篇综述概述了微加工技术的最新发展以及针对不同应用的介电泳微器件的结构。本文提供了基于微流控技术的粒子处理和分离技术。此外,我们还介绍了DEP的理论背景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号