首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas
【24h】

Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

机译:纯旋转CARS测温研究空气和乙烯-空气纳秒脉冲放电等离子体中的低温氧化动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.
机译:纯旋转CARS测温法用于研究在40 Torr压力下在化学计量和燃料稀薄条件下在乙烯-空气中重复纳秒脉冲放电中的低温等离子体辅助燃料氧化动力学。高压纳秒脉冲(峰值电压20 kV;脉冲持续时间约25 ns)以40 kHz的脉冲重复频率和10 Hz的突发重复频率激发空气和燃料-空气混合物。脉冲串中的脉冲数从几个脉冲到几百个脉冲不等。将结果与先前开发的烃-空气等离子体化学模型进行了比较,该模型进行了修改,以结合与数密度耦合到等离子体的纳秒放电脉冲能量的非经验定标,以及一维传导热传递。实验确定的时间分辨温度与突发中的脉冲数有关,与模型预测非常吻合。结果表明,与空气等离子体相比,燃料空气等离子体中的加热速率要快得多,这主要归因于燃料与等离子体产生的O原子的放热反应中的能量释放。发现燃料-空气等离子体中的初始加热速率由自由基(主要是O原子)的生成速率控制,并且几乎与当量比无关。在较长的爆裂持续时间下,当所有燃料都被氧化时,稀薄燃料空气混合物中的加热速率会大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号