首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >Vesicle dynamics: How synaptic proteins regulate different modes of neurotransmission
【24h】

Vesicle dynamics: How synaptic proteins regulate different modes of neurotransmission

机译:囊泡动力学:突触蛋白如何调节神经传递的不同模式

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Central synapses operate neurotransmission in several modes: synchronous/fast neurotransmission (neurotransmitters release is tightly coupled to action potentials and fast), asynchronous neurotransmission (neurotransmitter release is slower and longer lasting), and spontaneous neurotransmission (where small amounts of neurotransmitter are released without being evoked by an action potential). A substantial body of evidence from the past two decades suggests that seemingly identical synaptic vesicles possess distinct propensities to fuse, thus selectively serving different modes of neurotransmission. In efforts to better understand the mechanism(s) underlying the different modes of synaptic transmission, many research groups found that synaptic vesicles used in different modes of neurotransmission differ by a number of synaptic proteins. Synchronous transmission with higher temporal fidelity to stimulation seems to require synaptotagmin 1 and complexin for its Ca2+ sensitivity, RIM proteins for closer location of synaptic vesicles (SV) to the voltage operated calcium channels (VGCC), and dynamin for SV retrieval. Asynchronous release does not seem to require functional synaptotagmin 1 as a calcium sensor or complexins, but the activity of dynamin is indispensible for its maintenance. On the other hand, the control of spontaneous neurotransmission remains less clear as deleting a number of essential synaptic proteins does not abolish this type of synaptic vesicle fusion. VGCC distance from the SV seems to have little control on spontaneous transmission, while there is an involvement of functional synaptic proteins including synaptotagmins and complexin. Recently, presynaptic deficits have been proposed to contribute to a number of pathological conditions including cognitive and mental disorders. In this review, we evaluate recent advances in understanding the regulatory mechanisms of synaptic vesicle dynamics and in understanding how different molecular substrates maintain selective modes of neurotransmission. We also highlight the implications of these studies in understanding pathological conditions.
机译:中枢突触以多种方式操纵神经传递:同步/快速神经传递(神经递质的释放与动作电位紧密相关且快速),异步神经传递(神经递质的释放较慢且持续时间更长)和自发神经传递(其中少量的神经递质被释放而不被释放)由动作电位引起)。在过去的二十年中,大量证据表明,看起来相同的突触囊泡具有不同的融合倾向,从而选择性地为神经传递的不同模式提供服务。为了更好地理解突触传递的不同模式的潜在机制,许多研究小组发现,在不同神经传递模式下使用的突触囊泡因许多突触蛋白而不同。具有较高时间保真度的刺激的同步传递似乎需要突触结合蛋白1和复合蛋白,因为其对Ca2 +敏感,RIM蛋白使突触小泡(SV)更靠近电压操纵的钙离子通道(VGCC),而动力蛋白则需要SV检索。异步释放似乎并不需要功能性突触结合蛋白1作为钙传感器或复合蛋白,但动力蛋白的活性对于维持它是必不可少的。另一方面,自发神经传递的控制仍然不清楚,因为删除许多必需的突触蛋白并不能消除这种类型的突触小泡融合。 VGCC与SV的距离似乎对自发传播几乎没有控制,而功能性突触蛋白(包括突触标签蛋白和Complexin)的参与。最近,已经提出突触前缺陷导致包括认知和精神障碍在内的许多病理状况。在这篇综述中,我们评估最近的进展,了解突触小泡动力学的调控机制,以及了解不同的分子底物如何维持神经传递的选择性模式。我们还强调了这些研究对理解病理状况的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号