...
首页> 外文期刊>Journal of Molecular Biology >Elucidation of the specific function of the conserved threonine triad responsible for human l-Asparaginase autocleavage and substrate hydrolysis
【24h】

Elucidation of the specific function of the conserved threonine triad responsible for human l-Asparaginase autocleavage and substrate hydrolysis

机译:阐明负责人l-天冬酰胺酶自动裂解和底物水解的保守苏氨酸三联体的特定功能

获取原文
获取原文并翻译 | 示例

摘要

Our long-term goal is the design of a human l-Asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-Activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.
机译:我们的长期目标是设计一种人类l-天冬酰胺酶(hASNase3)变体,该变体适用于癌症治疗,而不会出现与目前使用的细菌酶相关的免疫原性问题。天冬酰胺酶催化氨基酸天冬酰胺水解为天冬氨酸和氨。允许细菌天冬酰胺酶消耗血液中天冬酰胺的关键特性是其低微摩尔KM值。相比之下,人类酶对天冬酰胺的千摩尔KM。为实现用微摩尔KM设计hASNase3变体的目标,我们对该人酶的保守催化苏氨酸三联体进行了结构/功能分析。作为N末端亲核家族的成员,要具有酶促活性,hASNase3必须在残基Gly167和Thr168之间进行自动切割。为了确定三种保守的活性位点苏氨酸(苏氨酸三联体Thr168,Thr186,Thr219)对酶激活自动切割和天冬酰胺酶反应的贡献,我们准备了T168S,T186V和T219A / V突变体。除了在结构上进行检查之外,还测试了这些突变体的裂解和催化天冬酰胺水解的能力。我们还阐明了处于共价中间状态的第一个N末端亲核植物型天冬酰胺酶结构。我们的研究表明,尽管并非所有的三联体苏氨酸都需要裂解反应,但所有这些都对天冬酰胺酶活性至关重要。这些研究对hASNase3功能的加深了解揭示了控制卵裂和天冬酰胺酶反应的关键区域,这可能有助于设计获得低KM的天冬酰胺的变异体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号