首页> 外文期刊>Journal of Molecular Biology >Conformational heterogeneity of the SAM-I riboswitch transcriptional on state: A chaperone-like role for S-adenosyl methionine
【24h】

Conformational heterogeneity of the SAM-I riboswitch transcriptional on state: A chaperone-like role for S-adenosyl methionine

机译:状态上转录的SAM-1核糖开关的构象异质性:S-腺苷甲硫氨酸的伴侣样作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Riboswitches are promising targets for the design of novel antibiotics and engineering of portable genetic regulatory elements. There is evidence that variability in riboswitch properties allows tuning of expression for genes involved in different stages of biosynthetic pathways by mechanisms that are not currently understood. Here, we explore the mechanism for tuning of S-adenosyl methionine (SAM)-I riboswitch folding. Most SAM-I riboswitches function at the transcriptional level by sensing the cognate ligand SAM. SAM-I riboswitches orchestrate the biosynthetic pathways of cysteine, methionine, SAM, and so forth. We use base-pair probability predictions to examine the secondary-structure folding landscape of several SAM-I riboswitch sequences. We predict different folding behaviors for different SAM-I riboswitch sequences. We identify several "decoy" base-pairing interactions involving 5′ riboswitch residues that can compete with the formation of a P1 helix, a component of the ligand-bound "transcription OFF" state, in the absence of SAM. We hypothesize that blockage of these interactions through SAM contacts contributes to stabilization of the OFF state in the presence of ligand. We also probe folding patterns for a SAM-I riboswitch RNA using constructs with different 3′ truncation points experimentally. Folding was monitored through fluorescence, susceptibility to base-catalyzed cleavage, nuclear magnetic resonance, and indirectly through SAM binding. We identify key decision windows at which SAM can affect the folding pathway towards the OFF state. The presence of decoy conformations and differential sensitivities to SAM at different transcript lengths is crucial for SAM-I riboswitches to modulate gene expression in the context of global cellular metabolism.
机译:核糖开关是新型抗生素设计和便携式遗传调控元件工程的有希望的目标。有证据表明,核糖开关特性的可变性允许通过目前尚不了解的机制调节参与生物合成途径不同阶段的基因的表达。在这里,我们探讨了调整S-腺苷甲硫氨酸(SAM)-I核糖开关折叠的机制。通过检测同源配体SAM,大多数SAM-1核糖开关在转录水平上起作用。 SAM-1核糖开关协调半胱氨酸,蛋氨酸,SAM等的生物合成途径。我们使用碱基对概率预测来检查几个SAM-I核糖开关序列的二级结构折叠态。我们预测了不同的SAM-I核糖开关序列的不同折叠行为。我们确定了涉及5'核糖开关残基的几个“诱饵”碱基配对相互作用,这些残基可以与P1螺旋(配体结合的“转录OFF”状态)的组成部分竞争,而没有SAM。我们假设通过SAM接触阻止这些相互作用有助于配体存在时OFF状态的稳定。我们还实验性地使用具有不同3'截短点的构建体探索SAM-1核糖开关RNA的折叠模式。通过荧光,对碱催化的裂解的敏感性,核磁共振以及间接通过SAM结合来监测折叠。我们确定关键决策窗口,SAM可以在这些关键决策窗口上影响到OFF状态的折叠路径。诱饵构象的存在和在不同转录长度上对SAM的敏感性不同,对于SAM-1核糖开关在全球细胞代谢的情况下调节基因表达至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号