...
首页> 外文期刊>Journal of Molecular Biology >Computational design of a PAK1 binding protein.
【24h】

Computational design of a PAK1 binding protein.

机译:PAK1结合蛋白的计算设计。

获取原文
获取原文并翻译 | 示例

摘要

We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol, we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 muM. The tightest binding design, named Spider Roll, bound with an affinity of 100 muM. NMR-based structure prediction of Spider Roll based on backbone and (13)C(beta) chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full-length PAK1 in its activated state but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding 'on-rate' constant (10(5) M(-1) s(-1)). The ability to rationally design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful as therapeutics or molecular probes.
机译:我们描述了一种计算协议,称为DDMI,用于重新设计支架蛋白以结合到目标蛋白上的指定区域。 DDMI协议在Rosetta分子建模程序中实现,并使用刚体对接,序列设计以及基于梯度的主干和侧链扭转角最小化来设计支架和目标蛋白之间的低能界面。需要序列设计和构象优化的迭代轮来产生模型,该模型具有与天然复合物计算的结合能相似的计算结合能。我们还表明,可以通过序列设计来迭代具有分子动力学的其他构象采样,以进一步降低设计的配合物的计算能。为了实验性地测试DDMI协议,我们重新设计了人类增生性椎间盘蛋白,使其与p21激活的激酶1(PAK1)的激酶域结合。对六个设计进行了实验表征。其中两个设计汇总在一起,没有进一步描述。在其余的四个设计中,有三个绑定到PAK1的亲和力小于350μM。最紧密的绑定设计名为Spider Roll,其绑定亲和力为100μM。使用程序CS-ROSETTA基于主链和(13)Cβ化学位移的Spider Roll基于NMR的结构预测表明,人类增生盘蛋白的结构得以保留。诱变研究证实,Spider Roll结合了PAK1上的靶标斑。此外,Spider Roll在其激活状态下与全长PAK1结合,但在它形成自动抑制的构象以阻止Spider Roll目标位点时不与PAK1结合。随后的NMR表征Spider Roll与PAK1的结合揭示了相对较小的结合“接通速率”常数( 10(5)M(-1)s(-1))。合理设计新的蛋白质-蛋白质相互作用位点的能力是朝着创建可用作治疗剂或分子探针的新蛋白质迈出的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号