...
首页> 外文期刊>Journal of Molecular Biology >Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus.
【24h】

Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus.

机译:来自超嗜热古生古细菌的亚硫酸盐还原酶的结构。

获取原文
获取原文并翻译 | 示例

摘要

Conservation of energy based on the reduction of sulfate is of fundamental importance for the biogeochemical sulfur cycle. A key enzyme of this ancient anaerobic process is the dissimilatory sulfite reductase (dSir), which catalyzes the six-electron reduction of sulfite to hydrogen sulfide under participation of a unique magnetically coupled siroheme-[4Fe-4S] center. We determined the crystal structure of the enzyme from the sulfate-reducing archaeon Archaeoglobus fulgidus at 2-A resolution and compared it with that of the phylogenetically related assimilatory Sir (aSir). dSir is organized as a heterotetrameric (alphabeta)(2) complex composed of two catalytically independent alphabeta heterodimers. In contrast, aSir is a monomeric protein built of two fused modules that are structurally related to subunits alpha and beta except for a ferredoxin domain inserted only into the subunits of dSir. The [4Fe-4S] cluster of this ferredoxin domain is considered as the terminal redox site of the electron transferpathway to the siroheme-[4Fe-4S] center in dSir. While aSir binds one siroheme-[4Fe-4S] center, dSir harbors two of them within each alphabeta heterodimer. Surprisingly, only one siroheme-[4Fe-4S] center in each alphabeta heterodimer is catalytically active, whereas access to the second one is blocked by a tryptophan residue. The spatial proximity of the functional and structural siroheme-[4Fe-4S] centers suggests that the catalytic activity at one active site was optimized during evolution at the expense of the enzymatic competence of the other. The sulfite binding mode and presumably the mechanism of sulfite reduction appear to be largely conserved between dSir and aSir. In addition, a scenario for the evolution of Sirs is proposed.
机译:基于硫酸盐还原的能量节约对于生物地球化学硫循环至关重要。这个古老的厌氧过程的关键酶是异化亚硫酸盐还原酶(dSir),它在独特的磁耦合西罗血红素-[4Fe-4S]中心的参与下催化亚硫酸盐从六电子还原为硫化氢。我们在2-A分辨率下确定了硫酸盐还原古生古菌中的酶的晶体结构,并将其与系统发育相关的同化先生(aSir)进行了比较。 dSir被组织为由两个催化独立的字母a异二聚体组成的异四聚体(alphabeta)(2)复杂。相反,aSir是由两个融合模块组成的单体蛋白,除了在铁氧还蛋白结构域中仅插入dSir的亚基外,其结构上与亚基α和β有关。该铁氧还蛋白结构域的[4Fe-4S]簇被认为是电子传递途径到dSir中西罗血红素-[4Fe-4S]中心的末端氧化还原位点。当aSir结合一个Siroheme- [4Fe-4S]中心时,dSir在每个字母异源二聚体中包含两个。令人惊讶地,每个字母异源二聚体中只有一个西罗血红素-[4Fe-4S]中心具有催化活性,而色氨酸残基阻止了进入第二个。功能和结构西罗血红素-[4Fe-4S]中心的空间接近性表明,一个活性位点的催化活性在进化过程中得到了优化,而另一种酶解的能力却有所降低。亚硫酸盐的结合模式以及亚硫酸盐还原的机理大概在dSir和aSir之间是非常保守的。此外,提出了Sirs进化的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号