...
首页> 外文期刊>Journal of Molecular Biology >Computational redesign of the SHV-1 beta-lactamase/beta-lactamase inhibitor protein interface.
【24h】

Computational redesign of the SHV-1 beta-lactamase/beta-lactamase inhibitor protein interface.

机译:SHV-1β-内酰胺酶/β-内酰胺酶抑制剂蛋白界面的计算重新设计。

获取原文
获取原文并翻译 | 示例

摘要

Beta-lactamases are enzymes that catalyze the hydrolysis of beta-lactam antibiotics. beta-lactamase/beta-lactamase inhibitor protein (BLIP) complexes are emerging as a well characterized experimental model system for studying protein-protein interactions. BLIP is a 165 amino acid protein that inhibits several class A beta-lactamases with a wide range of affinities: picomolar affinity for K1; nanomolar affinity for TEM-1, SME-1, and BlaI; but only micromolar affinity for SHV-1 beta-lactamase. The large differences in affinity coupled with the availability of extensive mutagenesis data and high-resolution crystal structures for the TEM-1/BLIP and SHV-1/BLIP complexes make them attractive systems for the further development of computational design methodology. We used EGAD, a physics-based computational design program, to redesign BLIP in an attempt to increase affinity for SHV-1. Characterization of several of designs and point mutants revealed that in all cases, the mutations stabilize the interface by 10- to 1000-fold relative to wild type BLIP. The calculated changes in binding affinity for the mutants were within a mean absolute error of 0.87 kcal/mol from the experimental values, and comparison of the calculated and experimental values for a set of 30 SHV-1/BLIP complexes yielded a correlation coefficient of 0.77. Structures of the two complexes with the highest affinity, SHV-1/BLIP (E73M) and SHV-1/BLIP (E73M, S130K, S146M), are presented at 1.7 A resolution. While the predicted structures have much in common with the experimentally determined structures, they do not coincide perfectly; in particular a salt bridge between SHV-1 D104 and BLIP K74 is observed in the experimental structures, but not in the predicted design conformations. This discrepancy highlights the difficulty of modeling salt bridge interactions with a protein design algorithm that approximates side chains as discrete rotamers. Nevertheless, while local structural features of the interface were sometimes miscalculated, EGAD is globally successful in designing complexes with increased affinity.
机译:β-内酰胺酶是催化β-内酰胺抗生素水解的酶。 β-内酰胺酶/β-内酰胺酶抑制剂蛋白(BLIP)复合物作为研究蛋白质-蛋白质相互作用的特征鲜明的实验模型系统正在兴起。 BLIP是一种165个氨基酸的蛋白质,可抑制多种具有广泛亲和力的A类β-内酰胺酶:对K1的皮摩尔亲和力;对TEM-1,SME-1和BlaI的纳摩尔亲和力;但对SHV-1β-内酰胺酶只有微摩尔的亲和力。亲和力的巨大差异以及适用于TEM-1 / BLIP和SHV-1 / BLIP复合物的广泛诱变数据和高分辨率晶体结构的可用性,使它们成为进一步开发计算设计方法的诱人系统。我们使用EGAD(基于物理的计算设计程序)来重新设计BLIP,以增加对SHV-1的亲和力。几种设计和点突变体的表征表明,在所有情况下,突变均使界面相对于野生型BLIP稳定10至1000倍。计算得出的突变体结合亲和力的变化与实验值的平均绝对误差为0.87 kcal / mol,并且对一组30种SHV-1 / BLIP复合物的计算值与实验值进行比较,得出相关系数为0.77 。亲和力最高的两个复合物SHV-1 / BLIP(E73M)和SHV-1 / BLIP(E73M,S130K,S146M)的结构以1.7 A分辨率给出。尽管预测的结构与实验确定的结构有很多共通之处,但它们并不一致。特别是在实验结构中观察到SHV-1 D104与BLIP K74之间的盐桥,但未在预测的设计构象中观察到。这种差异凸显了使用蛋白质设计算法模拟盐桥相互作用的难度,该算法将侧链近似为离散的旋转异构体。然而,尽管有时会误计算接口的局部结构特征,但EGAD在设计具有更高亲和力的复合物方面在全球范围内都是成功的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号