...
首页> 外文期刊>Journal of Molecular Biology >SEA domain autoproteolysis accelerated by conformational strain: Mechanistic aspects
【24h】

SEA domain autoproteolysis accelerated by conformational strain: Mechanistic aspects

机译:构象应变促进SEA域自蛋白水解:机理方面

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A subclass of SEA (sea urchin sperm protein, enterokinase, and agrin) domain proteins undergoes autoproteolysis between glycine and serine in a conserved G(-1)S(+1)VVV motif to generate stable heterodimers. Autoproteolysis has been suggested to involve only the intramolecular catalytic action of the conserved serine hydroxyl in combination with conformational strain of the glycine-serine peptide bond. We conducted a number of experiments and simulations on the SEA domain from the MUC1 mucin to test this mechanism. Alanine-scanning mutagenesis of polar residues in the vicinity of the cleavage site demonstrates that only the nucleophile at position +1 is required for efficient proteolysis. Molecular modeling shows that an uncleaved trans peptide is incompatible with the native heterodimeric structure, resulting in disruption of secondary structure elements and distortion of the scissile peptide bond. Insertion of glycine residues (to obtain G,,G(-1)S(+1)VVV motifs) appears to relieve strain, and autoproteolysis is 100 times slower in a 1G (n = 1) mutant and not measurable in 2G and 4G mutants. Removal of the catalytic serine hydroxyl hampers cleavage considerably, but measurable autoproteolysis of this S1098A mutant still proceeds in the presence of strain alone. The uncleaved SEA precursor populates interconverting partially folded conformations, and autoproteolysis coincides with adoption of proper beta-sheet secondary structure and completed folding. Molecular dynamics simulations of the precursor show that the serine hydroxyl and the preceding glycine carbonyl carbon can be in van der Waals contact at the same time as the scissile peptide bond becomes strained. These observations are all consistent with autoproteolysis accelerated by N -> O acyl shift and conformational strain imposed upon protein folding in a reaction for which the free-energy barrier is decreased by substrate destabilization rather than by transition-state stabilization. The energetics of this coupled folding and autoproteolysis mechanism is accounted for in an accompanying article. (C) 2008 Published by Elsevier Ltd.
机译:SEA(海胆精子蛋白,肠激酶和凝集素)域蛋白的一个子类在保守的G(-1)S(+1)VVV主题甘氨酸和丝氨酸之间进行自动蛋白水解以生成稳定的异二聚体。已经提出自蛋白水解仅涉及保守的丝氨酸羟基的分子内催化作用以及甘氨酸-丝氨酸肽键的构象应变。我们对来自MUC1粘蛋白的SEA域进行了许多实验和模拟,以测试这种机制。裂解位点附近的极性残基的丙氨酸扫描诱变表明,只有+1位的亲核试剂才能有效地进行蛋白水解。分子建模显示未切割的反式肽与天然异源二聚体结构不相容,导致二级结构元件的破坏和可裂解肽键的扭曲。插入甘氨酸残基(获得G ,, G(-1)S(+1)VVV基序)似乎可以缓解张力,并且在1G(n = 1)突变体中自蛋白水解的速度要慢100倍,而在2G和4G中无法测量突变体。催化丝氨酸羟基的去除阻碍了裂解,但是仅在菌株存在下,该S1098A突变体的可测量的自蛋白水解仍然进行。未裂解的SEA前体占据了相互转化的部分折叠构象,而自动蛋白水解与采用适当的β-折叠二级结构和完全折叠相吻合。前体的分子动力学模拟表明,当易裂肽键断裂时,丝氨酸羟基和前面的甘氨酸羰基碳可处于范德华接触。这些观察结果均与通过N→O酰基转移和在蛋白质折叠中施加的构象应变加速的自蛋白水解作用相一致,该反应中的自由能屏障通过底物不稳定而不是通过过渡态稳定而降低。随附的文章介绍了这种折叠和自动蛋白水解机制耦合的能量。 (C)2008由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号