...
首页> 外文期刊>Journal of Molecular Biology >Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and rieske-type [2Fe-2S] ferredoxin
【24h】

Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and rieske-type [2Fe-2S] ferredoxin

机译:依赖NADH的铁氧还蛋白还原酶与rieske型[2Fe-2S]铁氧还蛋白之间的氧化还原依赖性相互作用的分子机理

获取原文
获取原文并翻译 | 示例
           

摘要

The electron transfer system of the biphenyl dioxygenase BphA, which is derived from Acidovorax sp. (formally Pseudomonas sp.) strain KKS102, is composed of an FAD-containing NADH-ferredoxin reductase (BphA4) and a Rieske-type [2Fe-2S] ferredoxin (BphA3). Biochemical studies have suggested that the whole electron transfer process from NADH to BphA3 comprises three consecutive elementary electron-transfer reactions, in which BphA3 and BphA4 interact transiently in a redox-dependent manner. Initially, BphA4 receives two electrons from NADH. The reduced BphA4 then delivers one electron each to the [2Fe-2S] cluster of the two BphA3 molecules through redox-dependent transient interactions. The reduced BphA3 transports the electron to BphA1A2, a terminal oxygenase, to support the activation of dioxygen for biphenyl dihydroxylation. In order to elucidate the molecular mechanisms of the sequential reaction and the redox-dependent interaction between BphA3 and BphA4, we determined the crystal structures of the productive BphA3-BphA4 complex, and of free BphA3 and BphA4 in all the redox states occurring in the catalytic cycle. The crystal structures of these reaction intermediates demonstrated that each elementary electron transfer induces a series of redox-dependent conformational changes in BphA3 and BphA4, which regulate the interaction between them. In addition, the conformational changes induced by the preceding electron transfer seem to induce the next electron transfer. The interplay of electron transfer and induced conformational changes seems to be critical to the sequential electron-transfer reaction from NADH to BphA3. (C) 2007 Elsevier Ltd. All rights reserved.
机译:联苯双加氧酶BphA的电子转移系统,它来自Acidovorax sp.。 (正式假单胞菌属)菌株KKS102由含有FAD的NADH-铁氧还蛋白还原酶(BphA4)和Rieske型[2Fe-2S]铁氧还蛋白(BphA3)组成。生化研究表明,从NADH到BphA3的整个电子转移过程包括三个连续的基本电子转移反应,其中BphA3和BphA4以依赖氧化还原的方式短暂相互作用。最初,BphA4从NADH接收两个电子。然后,还原的BphA4通过依赖于氧化还原的瞬态相互作用将一个电子各自传递到两个BphA3分子的[2Fe-2S]簇。还原的BphA3将电子传输到末端加氧酶BphA1A2,以支持双联二羟基化的双氧活化。为了阐明顺序反应的分子机理以及BphA3和BphA4之间的氧化还原依赖性相互作用,我们确定了生产性BphA3-BphA4复合物以及游离BphA3和BphA4在催化过程中所有氧化还原状态下的晶体结构。周期。这些反应中间体的晶体结构表明,每个基本电子转移都会在BphA3和BphA4中诱导一系列依赖氧化还原的构象变化,从而调节它们之间的相互作用。另外,由先前的电子转移引起的构象变化似乎诱导了下一电子转移。电子转移和诱导的构象变化的相互作用似乎对从NADH到BphA3的顺序电子转移反应至关重要。 (C)2007 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号