...
首页> 外文期刊>Journal of Materials Science >Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications
【24h】

Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications

机译:用于高温氢传感器的掺杂z酸锆纳米材料的研究

获取原文
获取原文并翻译 | 示例

摘要

The incorporation of selective nanomaterials, such as common metal oxide semiconductor compositions, into resistive-type gas sensors has been shown by many researchers to lead to very high sensitivities and response rates, especially for micro-sized chemical sensors for room-temperature applications. The same strategy utilizing sensing nanomaterials has not been demonstrated for hightemperature sensors due to the intrinsic instability of typical metal oxide semiconductor nanomaterials at temperatures[ 500 ℃. Within this work, doped Gd_2Zr_2O_7 (GZO) nanomaterial compositions were investigated for H_2 resistive-type sensors for applications between 600 and 1000 ℃. This paper investigates the mechanism of H_2 sensing for doped GZO nanomaterials and SnO_2/GZO nanocomposites at the elevated temperatures. By integrating 10 vol.% nano-SnO_2 into yttrium-doped GZO nanomaterials, a sensitivity of 4.15 % was retained for 4000 ppm H_2 levels with a low signal drift of 0.42 %/h at 1000 ℃ in a 20 % O_2/N_2 gas stream. The signal drift was reduced by more than half of that compared to pure nano-SnO_2 at the same conditions. The nano-GZO limited the grain growth of the nano-SnO_2 particles and also prevented the nano-SnO_2 from fully reducing to Sn at high temperatures in a low oxygen atmosphere. It is among the first resistive-type sensors operating at 1000 ℃ with sensing times of5 min. This demonstration provided an example of a strategy of combining traditional metal oxide semiconductor and refractory nanomaterial compositions to form sensing nanocomposites with new sensing mechanisms, as well as, enhanced chemical and microstructural stabilities in hightemperature environments.
机译:许多研究人员已经证明,将选择性的纳米材料(例如常见的金属氧化物半导体组合物)掺入电阻型气体传感器中会导致非常高的灵敏度和响应速度,尤其是对于室温应用中的微型化学传感器而言。由于典型的金属氧化物半导体纳米材料在500℃的温度下存在固有的不稳定性,因此尚未针对高温传感器采用相同的利用传感纳米材料的策略。在这项工作中,研究了掺杂的Gd_2Zr_2O_7(GZO)纳米材料组合物用于H_2电阻型传感器的应用,适用于600至1000℃的温度范围。本文研究了高温下掺杂的GZO纳米材料和SnO_2 / GZO纳米复合材料的H_2感应机理。通过将10%(体积)的纳米SnO_2掺入掺Y的GZO纳米材料中,在20%O_2 / N_2气流中,在1000℃下对4000 ppm H_2的浓度保持4.15%的灵敏度,而信号漂移仅为0.42%/ h。 。在相同条件下,与纯纳米SnO_2相比,信号漂移减少了一半以上。纳米GZO限制了纳米SnO_2颗粒的晶粒生长,并且还阻止了纳米SnO_2在低氧气氛下在高温下完全还原成锡。它是首批在1000℃下工作,感应时间为 5分钟的电阻型传感器。该演示提供了一种策略示例,该策略将传统的金属氧化物半导体和难熔的纳米材料组合在一起,以形成具有新传感机制的传感纳米复合材料,并在高温环境下增强了化学和微结构的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号