...
首页> 外文期刊>Journal of Materials Science >Development of a numerical mesoscale material model for short fibre-reinforced ceramics matrix composites
【24h】

Development of a numerical mesoscale material model for short fibre-reinforced ceramics matrix composites

机译:短纤维增强陶瓷基复合材料数值介观材料模型的建立

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The article describes the development of a numerical material model of ceramic matrix composite (CMC) reinforced by bundles of thousands of short carbon fibres and produced by means of a liquid silicon infiltration process. The objective of the article is the development of a numerical mesoscale model that considers the material as a simple bi-phasic composite constituted by an isotropic matrix with differently sized inclusions. The distinctive material microstructure that complicates the development of such a model is presented and the issues represented by the generation of the finite element models and by the identification of the effective properties of the constituent phases are discussed. In the presented approach, models are generated by numerically simulating the packing of bundles and phases are identified by means of tests and numerical analyses, which are performed on long fibre-reinforced specimens and on specimens subjected to a thermal process for the elimination of carbon reinforcement. The approach is applied to find out the parameters of a homogenized orthotropic model for CMC plates. The obtained results show that the numerical packing simulations can generate models with a realistic distribution of size, shape and orientation of the bundles. The mesoscale model and the phase properties identified by the proposed numerical and experimental procedure are validated by considering the stiffness of standard CMC specimens obtained in three-point bending tests. According to the results, the developed methodologies can be considered as a promising approach for a reliable prediction of short fibre-reinforced CMC elastic properties.
机译:该文章描述了陶瓷基复合材料(CMC)的数值材料模型的开发,该材料模型由成千上万的短碳纤维束加固,并通过液态硅渗透工艺生产。本文的目的是开发一种数值介观模型,该模型将材料视为由各向同性基质和不同尺寸的夹杂物构成的简单双相复合材料。提出了使这种模型的开发复杂化的独特的材料微观结构,并讨论了由有限元模型的产生以及组成相的有效性质的确定所代表的问题。在提出的方法中,通过数值模拟束的堆积来生成模型,并通过测试和数值分析来识别相,这是在长纤维增强的试样和经过热处理以消除碳增强的试样上进行的。该方法用于找出CMC板的均质正交各向异性模型的参数。获得的结果表明,数值堆积模拟可以生成具有实际大小,形状和束方向分布的模型。通过考虑在三点弯曲试验中获得的标准CMC试样的刚度,验证了拟议的数值和实验程序确定的中尺度模型和相特性。根据结果​​,所开发的方法可以被认为是对短纤维增强的CMC弹性性能进行可靠预测的有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号