...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Modeling methane emissions from the Alaskan Yukon River basin, 1986-2005, by coupling a large-scale hydrological model and a process-based methane model
【24h】

Modeling methane emissions from the Alaskan Yukon River basin, 1986-2005, by coupling a large-scale hydrological model and a process-based methane model

机译:结合大型水文模型和基于过程的甲烷模型,对1986-2005年阿拉斯加育空河流域的甲烷排放进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

Much progress has been made in methane modeling for the Arctic. However, there is still large uncertainty in emissions estimates due to the spatial variability in water table depth resulting from complex topographic gradients, and due to variations in methane production and oxidation due to complex freezing and thawing processes. Here we extended an extant methane emission module within a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to include a large-scale hydrology model, the variable infiltration capacity (VIC) model. The VIC model provides the required inputs, including freezing and thawing fronts, soil temperature and moisture, to the methane module. The effect of topography on the redistribution of soil moisture and water table depth was explicitly modeled using the TOPMODEL approach. The coupled modeling framework was applied to the Yukon River basin at a spatial resolution of 1km from 1986 to 2005. The simulations show that the average annual net emissions of CH _4 from the region are 4.01 Tg CH _4 yr ~(-1). El Nio phenomena usually lead to positive emission anomalies, while decreases in net CH _4 emissions may be associated with strong La Nia events. Precipitation was found to be more closely related to CH _4 dynamics than to soil temperature and active layer depth during the study period. This study suggests that the effects of soil freezing and thawing processes and the effects of microtopography on hydrology should be considered in the quantification of CH _4 emissions.
机译:北极的甲烷建模已取得很大进展。但是,由于复杂的地形梯度导致地下水位深度的空间变化,以及由于复杂的冷冻和融化过程导致甲烷生成和氧化的变化,排放估算仍存在很大不确定性。在这里,我们在生物地球化学模型(陆地生态系统模型(TEM))中扩展了现存的甲烷排放模块,以包括大型水文模型,可变渗透能力(VIC)模型。 VIC模型向甲烷模块提供所需的输入,包括冻结和解冻前沿,土壤温度和湿度。使用TOPMODEL方法明确模拟了地形对土壤水分和地下水位深度重新分布的影响。耦合模型框架从1986年到2005年以1 km的空间分辨率应用于育空河流域。模拟表明,该地区CH _4的年平均净排放量为4.01 Tg CH _4 yr〜(-1)。厄尔尼诺现象通常导致正排放异常,而净CH _4排放减少可能与强烈的拉尼亚事件有关。在研究期间,发现降水与CH _4动力学的关系比与土壤温度和活性层深度的关系更密切。这项研究表明,在量化CH _4排放量时,应考虑土壤冻结和解冻过程的影响以及微观地形对水文学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号