首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry
【24h】

Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry

机译:在线多角度静态光散射和微分折光法在中空纤维流场-流分离中表征多糖

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, often-times due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (R-H) measurements from off-line quasi-elastic light scattering (QELS) and by R-H distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-a-vis experimentally determined data. Published by Elsevier B.V.
机译:多糖的摩尔质量和大小的准确表征是一个持续的挑战,通常是由于结构多样性,而且还因为宽的摩尔质量(M)范围(单个多糖可以存在)以及许多多糖的超高M 。由于存在后者,这些生物大分子中的许多在通过尺寸排阻甚至流体动力色谱(分别为SEC和HDC)进行分析时都会经历柱上,流诱导的降解。迄今为止,已经采用不对称流场-流分馏法(AF4)解决了较温和的分馏方法的必要性。在这里,我们介绍了中空纤维流场流分馏(HF5)与多角度静态光散射(MALS)和差示折光法(DRI)检测的耦合以分析多糖。在HF5中,与SEC或HDC相比,在分离过程中施加在大分子上的应力更少,与AF4相比,HF5可以提供更高的灵敏度,并且对系统过载和分析物聚集的倾向更小。与MALS和DRI偶联可确定绝对的,与校准曲线无关的摩尔质量平均值和分散度。目前的dex5,支链淀粉和落叶松阿拉伯半乳聚糖的HF5 / MALS / DRI实验的结果增加了离线准弹性光散射(QELS)的流体动力学半径(RH)测量,并通过RH分布计算和分形图模拟获得了场流分离理论的有限元分析实现是通过市售软件实现的。作为这项研究的一部分,我们研究了HF5中分析物的回收率,以及计算结果和模拟结果与实验确定的数据之间差异的可能原因。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号