首页> 外文期刊>Journal of Colloid and Interface Science >Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles
【24h】

Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles

机译:具有疏水性和亲水性纳米粒子的超疏水性和高液滴附着力的耐磨玫瑰花瓣效果表面

获取原文
获取原文并翻译 | 示例
           

摘要

Surfaces exhibiting the so-called "petal effect" (superhydrophobicity with high droplet adhesion) have potential for applications such as the transport of small volumes of liquid. It is known that the microstructure pitch value and nanostructure density are important in achieving this effect, both in rose petals themselves and in synthetic petal-effect surfaces. However, the effect of the surface energy of materials on these values has not been systematically studied. In addition, wear resistance, which is critical for industrial applications, has rarely been examined for petal-effect surfaces. In this study, surfaces of varying microstructure pitch and nanostructure density were fabricated by depositing ZnO nanoparticles onto micropatterned substrates. The prepared surfaces were then modified with octadecylphosphonic acid (ODP) in order to hydrophobize the ZnO nanoparticles. The wettability of the surfaces was characterized both before and after ODP modification. The effect of hydrophobizing the nanostructure was examined with regards to the values of microstructure pitch and nanostructure density necessary to achieve the petal effect. In addition, to study wear resistance for industrial applications, a wear experiment was performed using an atomic force microscope (AFM).
机译:表现出所谓的“花瓣效应”(具有高液滴附着力的超疏水性)的表面具有潜在的应用潜力,例如少量液体的运输。众所周知,无论是在玫瑰花瓣本身还是在合成的花瓣效应表面中,微观结构的螺距值和纳米结构的密度对于实现这种效果都很重要。但是,尚未系统研究材料表面能对这些值的影响。此外,对于工业应用至关重要的耐磨性很少用于花瓣效应表面的检查。在这项研究中,通过将ZnO纳米颗粒沉积到微图案化的基底上来制造具有不同的微结构间距和纳米结构密度的表面。然后将制备的表面用十八烷基膦酸(ODP)改性,以使ZnO纳米颗粒疏水化。在ODP改性之前和之后均表征了表面的润湿性。关于实现花瓣效应所需的微结构间距和纳米结构密度的值,检查了纳米结构的疏水化效果。另外,为了研究工业应用的耐磨性,使用原子力显微镜(AFM)进行了磨损实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号