...
【24h】

Synthesis and kinetic study of (Mo,W)Si_2-WSi_2 nanocomposite by mechanical alloying

机译:机械合金化合成(Mo,W)Si_2-WSi_2纳米复合材料及其动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, nanocomposite of (Mo,W)Si_2-WSi_2 was synthesized via mechanical alloying (MA) and heat treatment. The phase transformation of the powders after various milling durations and annealing was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). Microstructural evolutions were characterized by scanning electron microscopy and transmission electron microscopy (TEM). Increasing the milling time to 80 h caused the formation of (Mo, W, Si) solid solution, r-(Mo,W)Si_2, h-WSi_2 phase, and a trace amount of unreacted raw material. However the post-annealing at 1000°C caused the complete formation of (Mo,W)Si_2-WSi_2 nanocomposite. The values of the grain growth exponent of t-(Mo,W)Si_2 phase for the powders milled for 40 and 80 h were 0.3 and 0.8, respectively, at 1000 °C. The grain growth activation energy of t-(Mo,W)Si_2 phase for the 80 h milled powders (97.19 KJ/mol) was lower than that for the 40 h sample (120.83 KJ/mol). The crystallite size of t-(Mo,W)Si_2 decreased to 32 nm (40 h) and 24 nm (80 h) with increasing milling time. However, the crystallite size of the milled samples increased to 60 and 87 nm after annealing at 1000 °C for 90 min. The DTA results of the as-milled specimens showed two exothermic peaks at around 600 and 900 °C relating to the formation of t-(Mo,W)Si_2 and h-WSi_2, respectively. The formation activation energy of t-(Mo,W)Si_2 was higher (144.58 KJ/mol) for the 80 h milled sample compared to the 40 h milled sample (131.61 KJ/ mol). The microhardness of (Mo,W)Si_2-WSi_2 nanocomposite increased with increasing milling time to 1020 Hv but decreased with escalating annealing temperature to 726 Hv.
机译:本研究通过机械合金化和热处理合成了(Mo,W)Si_2-WSi_2纳米复合材料。通过X射线衍射(XRD)和差热分析(​​DTA)研究了各种研磨时间和退火后粉末的相变。通过扫描电子显微镜和透射电子显微镜(TEM)表征微观结构的演变。将研磨时间延长至80 h会导致形成(Mo,W,Si)固溶体,r-(Mo,W)Si_2,h-WSi_2相以及痕量未反应的原料。然而,在1000℃下的后退火导致(Mo,W)Si_2-WSi_2纳米复合物的完全形成。在1000°C下研磨40和80 h的粉末的t-(Mo,W)Si_2相的晶粒长大指数分别为0.3和0.8。 80 h研磨粉(97.19 KJ / mol)的t-(Mo,W)Si_2相的晶粒生长活化能低于40 h样品(120.83 KJ / mol)。随着研磨时间的增加,t-(Mo,W)Si_2的微晶尺寸减小到32 nm(40 h)和24 nm(80 h)。但是,在1000°C退火90分钟后,研磨样品的微晶尺寸增加到60和87 nm。研磨后样品的DTA结果显示,分别在600和900°C出现两个放热峰,分别与t-(Mo,W)Si_2和h-WSi_2的形成有关。与研磨40 h的样品(131.61 KJ / mol)相比,研磨80 h的样品的t-(Mo,W)Si_2的形成活化能更高(144.58 KJ / mol)。 (Mo,W)Si_2-WSi_2纳米复合材料的显微硬度随研磨时间的增加而增加至1020 Hv,但随着退火温度的升高而降低至726 Hv。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号