...
首页> 外文期刊>Journal of Applied Polymer Science >Rapid and efficient sprayed multilayer films for controlled drug delivery
【24h】

Rapid and efficient sprayed multilayer films for controlled drug delivery

机译:快速有效的喷涂多层薄膜,可控制药物输送

获取原文
获取原文并翻译 | 示例

摘要

The speed and scalability of film fabrication can dictate the translation of technologies from the laboratory scale to industrial level mass production. Spray-assisted layer-by-layer (LbL) film assembly enables the rapid coating of geometrically complex and porous substrates with functional polyelectrolyte multilayers. Unfortunately, the encapsulation efficiency can be as low as one percent, making this technique prohibitively costly with even modestly priced materials. Herein, we used containment chambers to separately capture the aerosolized solutions for each step in the spray-LbL process and analyzed the effect of recycling on multilayer film assembly. With potential biomedical applications, we studied the controlled release films of (Poly 2/heparin/lysozyme/heparin)(n) films and tracked the distribution of lysozyme after film assembly. In a Conventional Spray-LbL protocol, only 6% of the aerosolized lysozyme is incorporated into the film. By collecting and returning the expended solutions to their respective reservoirs (Recycle Spray-LbL), we increased this efficiency to 15%. We also tuned the final distribution of lysozyme by adjusting the spray times (Optimized Spray-LbL), which minimized the amount of lysozyme lost to non-specific adsorption and reduced the fraction of lysozyme lost to the wash step from 30% and 75% (Conventional and Recycle Spray-LbL, respectively) to 13%. Despite the changes in film assembly parameters, each film demonstrated similar controlled release properties. With the inherent limitations of time and cost facing Dip and Conventional Spray-LbL technologies, respectively, the implementation of recycling to the latter demonstrates improvements in efficiency and time that may make it more attractive for the manufacture of biomedical coatings. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43563.
机译:薄膜制造的速度和可扩展性可以决定技术从实验室规模到工业规模大规模生产的转化。喷涂辅助的逐层(LbL)薄膜组件可使用功能性聚电解质多层膜快速涂覆几何复杂且多孔的基材。不幸的是,封装效率可能低至百分之一,使得即使采用价格适中的材料,该技术的成本也过高。在这里,我们使用容纳室分别捕获喷雾LbL过程中每个步骤的雾化溶液,并分析了回收对多层膜组件的影响。在潜在的生物医学应用中,我们研究了(Poly 2 /肝素/溶菌酶/肝素)(n)膜的控释膜,并跟踪了膜组装后溶菌酶的分布。在常规喷雾-LbL方案中,仅6%的雾化溶菌酶被掺入膜中。通过收集消耗的溶液并将其返回到各自的容器(循环喷雾LbL),我们将效率提高到15%。我们还通过调整喷雾时间(Optimized Spray-LbL)来调整溶菌酶的最终分布,这可以最大程度地减少因非特异性吸附而损失的溶菌酶的数量,并减少洗涤步骤中损失的溶菌酶的比例从30%和75%(常规和循环喷雾(LbL)分别达到13%。尽管膜组装参数发生了变化,但每种膜仍显示出相似的控释性能。浸入式和常规Spray-LbL技术分别面临时间和成本的固有限制,对后者的回收利用证明了效率和时间的提高,这可能使其对生物医学涂层的制造更具吸引力。 (c)2016 Wiley Periodicals,Inc. J. Appl。 Polym。科学2016,133,43563。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号