首页> 外文期刊>Journal of Applied Polymer Science >Remote-Controlled Peristaltic Locomotion in Free-Floating PNIPAM Hydrogels
【24h】

Remote-Controlled Peristaltic Locomotion in Free-Floating PNIPAM Hydrogels

机译:自由浮动PNIPAM水凝胶中的蠕动运动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Peristalsis-driven locomotion, by nature of its flexibility and deformability, is a highly advantageous mechanism for mobility in soft materials and robots; however, utilization of this mechanism has been limited to restricted, frictional environments. (Seok et al., presented at 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK May 3–8, 2010; Boxerbaum et al., Int J Robotics Res 2012, 31, 302; Boxerbaum et al., presented at 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, 2011; Arora et al., J Polym Sci Part A: Polym Chem 2009, 47, 5027). We have removed this limitation and expanded the use of peristaltic locomotion to open aqueous environments by remotely inducing peristalsis via spatially controlled volume phase transitions in thermosensitive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. The resulting asymmetry causes steady, incremental linear displacement in the hydrogel's center of mass, thus producing directed, remote-controlled locomotion. In our proof-of-principle system, we controlled the peristaltic locomotion of the hydrogels using a handheld laser to selectively induce volume phase transitions in the hydrogel. The PNIPAM hydrogels' energy absorbance capability was enhanced by incorporating the New Indocyanine Green laser dye (IR-820) into the gel. The use of IR-820 is likely to expand the application space for these hydrogels due to new opportunities for conjugation chemistry. (Prajapati et al., Molecular Imaging 2009, 8, 45; Fernandez-Fernandez et al., Molecular Imaging 2011, 11, 1). Overall, such an approach increases the capability of both peristaltic locomotion as a mechanism for mobility in soft robots, and PNIPAM hydrogels as a biotechnological platform.
机译:蠕虫驱动的运动,由于其灵活性和可变形性,是在软质材料和机器人中移动的高度有利的机制。但是,这种机制的使用仅限于受限的摩擦环境。 (Seok等人,于2010年5月3日至8日在美国安克雷奇安克雷奇市2010年IEEE机器人与自动化国际会议上发表; Boxerbaum等人,Int J Robotics Res 2012,31,302; Boxerbaum等人于2011年发表IEEE / RSJ国际智能机器人和系统国际会议,加利福尼亚州旧金山,2011年; Arora等人,《 J Polym Sci Part A:Polym Chem 2009,47,5027)。我们已经消除了这一限制,并通过在热敏性聚(N-异丙基丙烯酰胺)(PNIPAM)水凝胶中通过空间控制的体积相变来远程诱导蠕动,从而将蠕动运动扩展到开放的水环境中。由此产生的不对称性会在水凝胶的质心上引起稳定的增量线性位移,从而产生有方向的远程控制运动。在我们的原理证明系统中,我们使用手持式激光控制水凝胶的蠕动,以选择性地诱导水凝胶中的体积相变。通过将新型Indocyanine Green激光染料(IR-820)掺入凝胶中,可以增强PNIPAM水凝胶的能量吸收能力。由于结合化学的新机会,IR-820的使用可能会扩展这些水凝胶的应用空间。 (Prajapati等人,Molecular Imaging 2009,8,45; Fernandez-Fernandez等人,Molecular Imaging 2011,11,1)。总的来说,这种方法既提高了蠕动运动作为软机器人运动机制的能力,又增强了PNIPAM水凝胶作为生物技术平台的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号