首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads:evidence for parallel energy-transfer and electron-transfer based mechanisms
【24h】

Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads:evidence for parallel energy-transfer and electron-transfer based mechanisms

机译:Ir /镧系元素中Ir(III)单元对Eu(III)和Tb(III)基发光的敏化:基于平行能量转移和电子转移机理的证据

获取原文
获取原文并翻译 | 示例
           

摘要

A series of blue-luminescent Ir(III) complexes with a pendant binding site for lanthanide(III) ions has been synthesized and used to prepare Ir(III)/Ln(III) dyads (Ln = Eu, Tb, Gd). Photophysical studies were used to establish mechanisms of Ir→Ln (Ln = Tb, Eu) energy-transfer. In the Ir/Gd dyads, where direct Ir→Gd energy-transfer is not possible, significant quenching of Ir-based luminescence nonetheless occurred; this can be ascribed to photoinduced electron-transfer from the photo-excited Ir unit (*Ir, ~3MLCT/~3LC excited state) to the pendant pyrazolyl-pyridine site which becomes a good electron-acceptor when coordinated to an electropositive Gd(III) centre. This electron transfer quenches the Ir-based luminescence, leading to formation of a charge-separated {Ir~(4+)}~?-(pyrazolyl-pyridine)?- state, which is short-lived possibly due to fast back electron-transfer (<20 ns). In the Ir/Tb and Ir/Eu dyads this electron-transfer pathway is again operative and leads to sensitisation of Eu-based and Tb-based emission using the energy liberated from the back electron-transfer process. In addition direct Dexter-type Ir→Ln (Ln = Tb, Eu) energytransfer occurs on a similar timescale, meaning that there are two parallel mechanisms by which excitation energy can be transferred from *Ir to the Eu/Tb centre. Time-resolved luminescence measurements on the sensitised Eu-based emission showed both fast and slow rise-time components, associated with the PET-based and Dexter-based energy-transfer mechanisms respectively. In the Ir/Tb dyads, the Ir→Tb energy-transfer is only just thermodynamically favourable, leading to rapid Tb→Ir thermally-activated back energy-transfer and non-radiative deactivation to an extent that depends on the precise energy gap between the *Ir and Tb-based 5D4 states. Thus, the sensitised Tb(III)-based emission is weak and unusually short-lived due to back energy transfer, but nonetheless represents rare examples of Tb(III) sensitisation by a energy donor that could be excited using visible light as opposed to the usually required UV excitation.
机译:合成了一系列具有镧系离子(III)侧链结合位点的蓝色发光Ir(III)配合物,并用于制备Ir(III)/ Ln(III)二元组(Ln = Eu,Tb,Gd)。光物理研究被用于建立Ir→Ln(Ln = Tb,Eu)能量转移的机理。在不可能直接进行Ir→Gd能量转移的Ir / Gd二元组中,仍然发生了基于Ir的发光的显着猝灭。这可以归因于光诱导的电子从光激发的Ir单元(* Ir,〜3MLCT /〜3LC激发态)转移到吡唑基-吡啶侧基,当与正电的Gd(III)配位时成为良好的电子受体。 ) 中央。这种电子转移使基于Ir的发光猝灭,导致形成电荷分离的{Ir〜(4 +)}〜α-(吡唑基-吡啶)β-状态,该状态可能是短时的,这归因于快速的反向电子-传输(<20 ns)。在Ir / Tb和Ir / Eu二联体中,该电子转移途径再次起作用,并利用从反电子转移过程中释放出的能量导致基于Eu和基于Tb的发射敏化。此外,直接德克斯特型Ir→Ln(Ln = Tb,Eu)的能量传递发生在相似的时间尺度上,这意味着可以通过两种平行的机制将激发能从* Ir传递到Eu / Tb中心。敏化的Eu基发射的时间分辨发光测量显示上升时间和缓慢上升时间分量,分别与基于PET的能量传递和基于Dexter的能量传递机制相关。在Ir / Tb二元组中,Ir→Tb能量传递仅在热力学上有利,从而导致快速的Tb→Ir热活化背能量传递和非辐射失活,其程度取决于两者之间的精确能隙。 *基于Ir和Tb的5D4状态。因此,基于Tb(III)的敏化发射微弱,并且由于反向能量传递而异常短命,但仍然代表了能量供体对Tb(III)敏化的罕见例子,可以使用可见光来激发,而不是使用通常需要紫外线激发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号