首页> 外文期刊>The Journal of Experimental Biology >A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics
【24h】

A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics

机译:大嘴鲈鱼吸食系统的生物机器人模型:运动程序速度和舌骨运动学的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The vast majority of ray-finned fishes capture prey through suction feeding. The basis of this behavior is the generation of subambient pressure through rapid expansion of a highly kinetic skull. Over the last four decades, results from in vivo experiments have elucidated the general relationships between morphological parameters and subambient pressure generation. Until now, however, researchers have been unable to tease apart the discrete contributions of, and complex relationships among, the musculoskeletal elements that support buccal expansion. Fortunately, over the last decade, biorobotic models have gained a foothold in comparative research and show great promise in addressing long-standing questions in vertebrate biomechanics. In this paper, we present BassBot, a biorobotic model of the head of the largemouth bass (Micropterus salmoides). BassBot incorporates a 3D acrylic plastic armature of the neurocranium, maxillary apparatus, lower jaw, hyoid, suspensorium and opercular apparatus. Programming of linear motors permits precise reproduction of live kinematic behaviors including hyoid depression and rotation, premaxillary protrusion, and lateral expansion of the suspensoria. BassBot reproduced faithful kinematic and pressure dynamics relative to live bass. We show that motor program speed has a direct relationship to subambient pressure generation. Like vertebrate muscle, the linear motors that powered kinematics were able to produce larger magnitudes of force at slower velocities and, thus, were able to accelerate linkages more quickly and generate larger magnitudes of subambient pressure. In addition, we demonstrate that disrupting the kinematic behavior of the hyoid interferes with the anterior-to-posterior expansion gradient. This resulted in a significant reduction in subambient pressure generation and pressure impulse of 51% and 64%, respectively. These results reveal the promise biorobotic models have for isolating individual parameters and assessing their role in suction feeding.
机译:绝大多数的有鳍鳍鱼类通过吸食捕获猎物。这种行为的基础是通过高度动态的颅骨的快速扩张来产生环境压力。在过去的四十年中,体内实验的结果阐明了形态参数与环境压力产生之间的一般关系。但是,到目前为止,研究人员还无法弄清支持颊扩张的肌肉骨骼元素的离散贡献和复杂关系。幸运的是,在过去的十年中,生物机器人模型已在比较研究中立足,并在解决脊椎动物生物力学中长期存在的问题方面显示出巨大的希望。在本文中,我们介绍了BassBot,这是大嘴鲈(Micropterus salmoides)头的生物机器人模型。 BassBot结合了3D丙烯酸塑料骨架,包括神经颅,上颌装置,下颌,舌骨,悬垂和手术器械。线性电动机的编程可以精确再现运动学行为,包括舌骨下垂和旋转,上颌前突和悬吊索的横向扩展。 BassBot重现了相对于现场低音的忠实运动学和压力动力学。我们表明电机程序速度与环境压力的产生有直接关系。像脊椎动物的肌肉一样,为运动提供动力的线性电动机能够以较慢的速度产生更大的力,因此能够更快地加速链接并产生更大的环境压力。此外,我们证明破坏舌骨的运动学行为会干扰从前到后的膨胀梯度。这导致环境压力产生和压力脉冲分别显着降低了51%和64%。这些结果表明,生物机器人模型有望分离出各个参数并评估它们在吸食中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号