...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal
【24h】

Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal

机译:过渡态理论方法用于测量柔性纳米多孔材料中的扩散:在多孔有机笼式晶体中的应用

获取原文
获取原文并翻译 | 示例

摘要

Transition state theory (TST) methods are useful for predicting adsorbate diffusivities in nanoporous materials at time scales inaccessible to molecular dynamics (MD). Most TST applications treat the nanoporous framework as rigid, which is inaccurate in highly flexible materials or where adsorbate dimensions are comparable to the size of pore apertures. In this study, we demonstrate two computationally efficient TST methods for simulating adsorbate diffusion in nanoporous materials where framework flexibility has a significant influence on diffusion. These methods are applied to light gas diffusion in porous organic cage crystal 3 (CC3), a highly flexible molecular crystal that has shown promise in gas separation applications. Diffusion in CC3 is modeled as a series of uncorrelated adsorbate hops between cage molecules and the voids between adjacent cages. The first method we applied to compute adsorbate hopping rates in CC3 is implicit ligand sampling (ILS). In ILS TST, hopping rates are calculated in an ensemble of rigid framework snapshots captured from a fully flexible MD trajectory of the empty CC3 structure. The second TST method we applied is umbrella sampling (US), where hopping rates are computed from a series of biased MD simulations. Our ILS and US TST calculations are shown to agree well with direct MD simulation of adsorbate diffusion in CC3. We anticipate that the efficient TST methods detailed here will be broadly applicable to other classes of flexible nanoporous materials such as metal-organic frameworks.
机译:过渡态理论(TST)方法可用于在分子动力学(MD)无法达到的时间尺度上预测纳米多孔材料中的吸附物扩散率。大多数TST应用程序将纳米多孔框架视为刚性的,这在高度柔性的材料中不准确,或者吸附物的尺寸与孔的大小相当。在这项研究中,我们演示了两种计算效率高的TST方法,用于模拟纳米多孔材料中吸附物的扩散,其中框架的柔韧性对扩散有重大影响。这些方法应用于轻质气体在多孔有机笼状晶体3(CC3)中的扩散,多孔有机笼状晶体3(CC3)是高度灵活的分子晶体,在气体分离应用中显示出了希望。 CC3中的扩散被建模为笼分子与相邻笼之间的空隙之间的一系列不相关的吸附跃点。我们用于计算CC3中吸附物跳跃率的第一种方法是隐式配体采样(ILS)。在ILS TST中,从刚性框架快照的集合中计算跳变率,这些快照是从空CC3结构的完全灵活的MD轨迹捕获的。我们应用的第二个TST方法是伞状抽样(US),其中跳变率是根据一系列有偏差的MD模拟计算得出的。我们的ILS和US TST计算结果与CC3中吸附物扩散的直接MD模拟结果非常吻合。我们预计,此处详述的高效TST方法将广泛适用于其他类别的柔性纳米多孔材料,例如金属-有机骨架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号