首页> 外文会议>merican Chemical Society. >Porous Organic Cages: A modular and Predictable Alternative to Nanoporous Networks
【24h】

Porous Organic Cages: A modular and Predictable Alternative to Nanoporous Networks

机译:多孔有机笼:纳米多孔网络的模块化和可预测的替代品

获取原文

摘要

Research in nanoporous frameworks~1 has shown explosive growth recently, prompted by societally important applications in separation, energy storage, catalysis, and gas sequestration. Empirical rules exist for the assembly of these frameworks based upon the geometry and bonding patterns of the constituent nodes and linkers. It is still challenging, however, to control the placement and segregation of mixed functionality in three-dimensional porous solids. Indeed, recent studies on mixed frameworks suggest a tendency for random distribution of functionalities throughout the pores~(2-3) rather than, for example, the functional group localisation found in the reactive sites of enzymes~4. 'One-pot' chemical syntheses of porous frameworks from relatively simple starting materials may ultimately limit our scope to mimic more complex, compartmentalized biological structures. An alternative strategy is to prepare nanoporous solids from molecular organic pores~(5-16). In principle, functional pore modules could be covalently prefabricated and then assembled in a mix-and-match fashion to produce materials with specific properties~(7,11). We show here that ordered porous solids can be produced via the cocrystallization of two or more different organic cage modules via chiral recognition. The constituent modules are synthesized on gram scales and in high yields in a one-step procedure. Moreover, assembly of the porous cocrystals is as simple as combining the modules in solution and removing the solvent, thus leading to thermally-stable nanoporous solids. The method is not limited to one molecular combination but can be generalised based on the recognition of chirality between modules in a lock-and-key assembly that has analogues in biochemistry. We also show that the assembly mode can be predicted a priori, in a manner that is currently unique for porous solids (Fig. 1). We will also discuss for the first time the extension of this strategy to ternary cocrystals containing three or more separate modules (Fig. 2).
机译:纳米多孔框架的研究〜1最近表现出爆炸性增长,通过在分离,能量储存,催化和天然气封存中进行社会重要应用。基于组成节点和接头的几何形状和绑定模式,存在对这些框架的组装的经验规则。然而,它仍然具有挑战性,以控制三维多孔固体中混合功能的放置和分离。实际上,关于混合框架的最近研究表明,在孔径〜4的反应位点中发现的功能群定位,近期的函数随机分布的趋势提出了随机分布的趋势〜(2-3)。来自相对简单的起始材料的多孔框架的“单罐”化学合成可能最终限制我们的范围,以模仿更复杂的分隔型生物结构。另一种策略是从分子有机孔〜(5-16)中制备纳米多孔固体。原则上,功能性孔模块可以共价预制,然后以混合和匹配的方式组装以产生具有特定性质〜(7,11)的材料。在这里,我们在这里展示了通过手性识别通过两种或更多种不同的有机笼模块的共聚化来生产有序多孔固体。组成模块在克尺度上合成,在一步程中以高产率合成。此外,多孔钴组件的组装与溶液中的模块相结合并除去溶剂,因此导致热稳定的纳米多孔固体。该方法不限于一个分子组合,而是可以基于在具有生物化学中具有类似物的锁和关键组件中的模块之间的手足性的识别来推广。我们还表明,可以以当前独特的多孔固体独特的方式预测组装模式(图1)。我们还将首次讨论将此策略扩展到包含三个或多个单独模块的三元组织(图2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号