...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal-Organic Frameworks
【24h】

Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal-Organic Frameworks

机译:利用金属有机框架进行气体分离应用的周期性密度泛函理论计算得出的力场

获取原文
获取原文并翻译 | 示例
           

摘要

We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M-2(dobdc) (M-MOF-74; dobdc(4-) = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO2, H2O, and CH4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M2(dobpdc) (dobpdc(4-) = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H2O and N-2 upon these materials' performance for the separation of CO2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H2O vapor. The extent to which the various gases are affected by the concentration of H2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO2 selectivities over CH4 and N2 are observed as the temperature of the systems is lowered.
机译:我们提出了由密度泛函理论(DFT)计算得出的具有周期性边界条件的精确力场,用于涉及M-2(dobdc)(M-MOF-74; dobdc(4-)= 2,5-dioxidobenzenedicarboxylate; M的分子模拟中= Mg,Mn,Fe,Co,Ni,Zn)和类似拓扑的框架。在这些系统中,传统的力场由于牢固结合的开放金属部位而无法准确地模拟气体吸附。 DFT派生的力场预测这些框架内CO2,H2O和CH4的吸附比其他常见的力场更准确。我们显示这些力场也可以用于M2(dobpdc(4-)= 4,4'-dioxidobiphenyl-3,3'-dicarboxylate),这是MOF-74的扩展版本,因此很有希望用于研究类似于MOF-74的材料的通用力场的替代品,用于碳捕获应用。此外,预期该方法可以应用于其他金属有机框架拓扑,以获得不同系统的力场。我们已使用此力场研究了H2O和N-2等污染物对这些材料从天然气储层和燃煤发电厂中分离出CO2的性能的影响。具体而言,使用这些DFT衍生的力场计算出的混合物吸附等温线显示,即使存在痕量的H2O蒸气,许多气体组分的吸收也显着降低。对于不同的构架,各种气体受储层中H2O浓度影响的程度在数量上是不同的,并且与它们的吸附热有关。另外,随着系统温度降低,观察到与CH4和N2相比,CO2选择性显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号