首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Desorption Kinetics and Activation Energy for Cobalt Octaethylporphyrin from Graphite at the Phenyloctane Solution-Graphite Interface: An STM Study
【24h】

Desorption Kinetics and Activation Energy for Cobalt Octaethylporphyrin from Graphite at the Phenyloctane Solution-Graphite Interface: An STM Study

机译:苯基辛烷溶液-石墨界面处的石墨八乙基卟啉钴的解吸动力学和活化能:STM研究

获取原文
获取原文并翻译 | 示例
           

摘要

Temperature-dependent desorption rates and desorption energies are determined from a monolayer assembly at the solution-solid (SS) interface. Scanning tunneling microscopy (STM) was used to measure molecular-scale temperature-dependent desorption of cobalt(II) octaethylporphyrin (CoOEP) at the phenyloctane solution-highly ordered pyrolytic graphite (HOPG) interface. At lower temperatures, monolayer formation of metal(II) octaethylporphyrin (MOEP) on HOPG from solution was found to be completely controlled by kinetics, and the adlayer formed was stable up to 70 degrees C. Significant desorption of CoOEP from the HOPG surface was observed above 80 degrees C on a time scale of hours. CoOEP desorbs from HOPG into phenyloctane at a rate of 0.0055 +/- 0.0007 min(-1) at 90 degrees C, 0.013 +/- 0.001 min(-1) at 100 degrees C, and 0.033 +/- 0.003 min(-1) at 110 degrees C. From these temperature- and time-dependent measurements, assuming an Arrhenius rate law, the activation energy of molecular desorption at the SS interface was determined using studies solely based on STM. The desorption energy of CoOEP from HOPG into phenyloctane is determined to be 1.05 X 10(2) +/- 0.03 X 10(2) kJ/mol. NiOEP desorption occurs at a slower rate and is homogeneous across HOPG terraces, unlike the inhomogeneous desorption observed on Au(111). A previous study performed on Au(111) reported that the rate of desorption of CoOEP is 0.004 min(-1) at 135 degrees C. The calculated desorption rate on HOPG in this work is 0.22 min(-1), making the rate of desorption of CoOEP from HOPG 2 orders of magnitude greater than from Au(111). On the other hand, for solution concentrations of the order of 100 mu M, a dense monolayer is formed within seconds. For this fast adsorption process, where a full monolayer coverage occurs, the surface coverage of MOEP on both surfaces was determined by the relative concentration of each species in the phenyloctane solution. The rates of adsorption (for concentrations near 100 mu M) are found to be within 20% of each other. The surface structures of both the NiOEP and CoOEP on HOPG and Au(111) are very similar and can be described by A = 1.30 +/- 0.04 nm, B = 1.40 +/- 0.04 nm, and alpha = 57 degrees +/- 2 degrees with an area of 1.50 +/- 0.08 nm(2)/molecule.
机译:由温度决定的解吸速率和解吸能量由溶液-固体(SS)界面的单层组件确定。扫描隧道显微镜(STM)用于测量苯辛烷溶液-高度有序热解石墨(HOPG)界面上钴(II)八乙基卟啉(CoOEP)的分子尺度温度依赖性解吸。在较低的温度下,发现溶液中HOPG在HOPG上单层形成金属八金属卟啉(MOEP)的过程完全受动力学控制,并且形成的吸附层在高达70摄氏度的温度下稳定。观察到CoOEP从HOPG表面明显解吸。在数小时的时间范围内高于80摄氏度。 CoOEP在90摄氏度下以0.0055 +/- 0.0007分钟(-1)的速率从HOPG脱附到苯辛烷中,在100摄氏度下以0.013 +/- 0.001分钟(-1)的速率和0.033 +/- 0.003分钟(-1) )在110摄氏度。根据这些与温度和时间有关的测量,假设采用阿伦尼乌斯速率定律,则仅使用基于STM的研究确定SS界面上分子解吸的活化能。 CoOEP从HOPG到苯辛烷的解吸能确定为1.05 X 10(2)+/- 0.03 X 10(2)kJ / mol。与在Au(111)上观察到的不均匀解吸不同,NiOEP的解吸速度较慢,并且在HOPG阶跃之间是均匀的。先前对Au(111)进行的研究报告称,CoOEP在135摄氏度下的解吸速率为0.004 min(-1)。在这项工作中,计算出的HOPG的解吸速率为0.22 min(-1),使得从HOPG解吸CoOEP的数量级要比从Au(111)大2个数量级。另一方面,对于浓度为100μM的溶液,在几秒钟内形成致密的单层。对于这种快速吸附过程,当发生单层完全覆盖时,MOEP在两个表面上的表面覆盖率取决于苯基辛烷溶液中每种物质的相对浓度。吸附速率(浓度接近100μM时)相互之间在20%以内。在HOPG和Au(111)上的NiOEP和CoOEP的表面结构非常相似,可以用A = 1.30 +/- 0.04 nm,B = 1.40 +/- 0.04 nm和alpha = 57度+/-来描述2度,面积为1.50 +/- 0.08 nm(2)/分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号