...
首页> 外文期刊>Current computer-aided drug design >Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships§.
【24h】

Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships§.

机译:化学信息学中的化学图,分子矩阵和拓扑指数以及定量构效关系。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.
机译:化学和分子图在化学信息学,定量结构性质关系(QSPR),定量结构活性关系(QSAR),化学文库的虚拟筛选和药物设计计算中具有基本应用。图形的化学信息学应用包括化学结构表示和编码,数据库搜索和检索以及理化性质预测。 QSPR,QSAR和虚拟筛选均基于结构属性原理,该原理指出,可以根据化合物的化学结构预测其理化和生物学特性。这种结构-属性相关性通常是根据从分子图计算出的拓扑指数和指纹以及根据三维化学结构计算出的分子描述符得出的。我们在这里介绍了一些最重要的图形描述符和拓扑指数,包括分子矩阵,图形光谱,谱矩,图形多项式和顶点拓扑指数。这些图描述符用于基于分子连通性,图距离,倒数距离,距离度,距离效价,光谱,多项式和信息论概念来定义几个拓扑索引。基于分子图运算符,可以使用更通用的方法来开发分子描述符和拓扑索引,而分子图运算符定义了由通用公式关联的一系列图索引。包含杂原子和多个键的分子的图形描述符和拓扑指数是基于原子性质(例如原子序数,共价半径或电负性)的加权方案计算的。可以通过优化拓扑指数公式中的一些参数来改善QSPR和QSAR模型中的相关性,如基于原子连通性和图距的结构描述符所证明的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号