首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme-Li Salt Solvate Ionic Liquids
【24h】

Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme-Li Salt Solvate Ionic Liquids

机译:石墨电极与甘氨酸-锂盐溶剂化离子液体界面处锂离子去溶剂化的机理

获取原文
获取原文并翻译 | 示例
           

摘要

Li~+ intercalation into graphite electrodes was investigated in electrolytes consisting of triglyme (G3) and Li[TFSA] [TFSA = bis(trifluoromethanesulfonyl)amide]. Li~+- intercalated graphite was successfully formed in an equimolar molten complex, [Li(G3),][TFSA]. The desolvation of Li~+ ions took place at the graphite/[Li(G3)1][TFSA] interface in the electrode potential range 0.3—0 V vs Li. In contrast, the cointercalation of G3 and Li* (intercalation of solvate [Li(G3)1]~+ cation) into graphite occurred in [Li(G3)_x][TFSA] electrolytes containing excess G3 (x > 1). This cointercalation took place in the voltage range 1.5-0.2 V of the [Lil [Li(G3)_x][TFSA]lgraphite] cell. X-ray diffraction showed that the [Li(G3)1]~+-intercalated graphite forms staged phases in the voltage range 1.5-0.3 V. However, exfoliation of the graphite is caused by further intercalation at voltages lower than 0.3 V. [Li(G3)1]~+ intercalation was reversible in the voltage range 1.5-0.4 V. The cointercalation process was studied using cyclic voltammetry, and it was found that the electrode potential for cointercalation depends on the [Li(G3)1]~+ activity, irrespective of the presence of free (uncoordinated) G3. In contrast, the electrode potential for the formation of Li~+-intercalated graphite (desolvation of solvate [Li(G3)1]~+ cation) changes greatly, depending on the activities of not only the solvate [Li(G3)1]~+ cation but also free G3 in the electrolyte. In extremely concentrated electrolytes, the activity of the free solvent becomes very low. Raman spectroscopy confirmed a very low concentration of free G3 in [Li(G3)1][TFSA]. Consequently, the electrode potentials for the formation of Li~+-intercalated graphite were higher than that for cointercalation, and the cointercalation of G3 was inhibited in [Li(G3)1][TFSA].
机译:在由三甘醇二甲醚(G3)和Li [TFSA] [TFSA =双(三氟甲磺酰基)酰胺]组成的电解质中研究了Li〜+嵌入石墨电极的过程。在等摩尔熔融络合物[Li(G3),] [TFSA]中成功形成了Li〜+-嵌入石墨。 Li〜+离子的去溶剂化作用在石墨/ [Li(G3)1] [TFSA]界面处,相对于Li的电极电势范围为0.3-0V。相反,在含有过量G3(x> 1)的[Li(G3)_x] [TFSA]电解质中,发生了G3和Li *的共嵌入(溶剂化物[Li(G3)1]〜+阳离子的嵌入)进入石墨的现象。这种共嵌入发生在[Lil [Li(G3)_x] [TFSA] lgraphite]电池的1.5-0.2 V电压范围内。 X射线衍射表明,[Li(G3)1] ++嵌入的石墨在1.5-0.3 V的电压范围内形成阶段性相。但是,石墨的剥落是由于在低于0.3 V的电压下进一步嵌入引起的。 Li(G3)1]〜+的嵌入在1.5-0.4 V的电压范围内是可逆的。使用循环伏安法研究了共嵌入过程,发现共嵌入的电极电势取决于[Li(G3)1]〜 +活动,无论是否存在自由的(未协调的)G3。相反,形成Li〜+嵌入石墨(溶剂化物[Li(G3)1]〜+阳离子的去溶剂化)的电极电势变化很大,这不仅取决于溶剂化物[Li(G3)1]的活性。 〜+阳离子,以及电解质中的游离G3。在高度浓缩的电解质中,游离溶剂的活性非常低。拉曼光谱法证实[Li(G3)1] [TFSA]中游离G3的浓度非常低。因此,形成Li〜+嵌入石墨的电极电位高于共嵌入的电极电位,并且在[Li(G3)1] [TFSA]中抑制了G3的共嵌入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号