首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Comparing Matched PolymenFullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance
【24h】

Comparing Matched PolymenFullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance

机译:通过溶液序贯法和传统的熔铸法制备的匹配多聚富勒烯太阳能电池的比较:纳米级结构和器件性能

获取原文
获取原文并翻译 | 示例
       

摘要

Polymer:fullerene bulk heterojunction (BHJ) solar cell active layers can be created by traditional blend casting (BC), where the components are mixed together in solution before deposition, or by sequential processing (SqP), where the pure polymer and fullerene materials are cast sequentially from different solutions. Presently, however, the relative merits of SqP as compared to BC are not fully understood because there has yet to be an equivalent (composition-and thickness-matched layer) comparison between the two processing techniques. The main reason why matched SqP and BC devices have not been compared is because the composition of SqP active layers has not been accurately known. In this paper, we present a novel technique for accurately measuring the polymenfullerene film composition in SqP active layers, which allows us to make the first comparisons between rigorously composition-and thickness-matched BHJ organic solar cells made by SqP and traditional BC. We discover that, in optimal photovoltaic devices, SqP active layers have a very similar composition as their optimized BC counterparts (≈44-50 mass % PCBM). We then present a thorough investigation of the morphological and device properties of thickness-and composition-matched P3HT:PCBM SqP and BC active layers in order to better understand the advantages and drawbacks of both processing approaches. For our matched devices, we find that small-area SqP cells perform better than BC cells due to both superior film quality and enhanced optical absorption from more crystalline P3HT. The enhanced film quality of SqP active layers also results in higher performance and significantly better reproducibility in larger-area devices, indicating that SqP is more amenable to scaling than the traditional BC approach. X-ray diffraction, UV-vis absorption, and energy-filtered transmission electron tomography collectively show that annealed SqP active layers have a finer-scale blend morphology and more crystalline polymer and fullerene domains when compared to equivalently processed BC active layers. Charge extraction by linearly increasing voltage (CELrV) measurements, combined with X-ray photoelectron spectroscopy, also show that the top (nonsubstrate) interface for SqP films is slightly richer in PCBM compared to matched BC active layers. Despite these clear differences in bulk and vertical morphology, transient photovoltage, transient photocurrent, and subgap external quantum efficiency measurements all indicate that the interfacial electronic processes occurring at P3HT:PCBM heterojunctions are essentially identical in matched-annealed SqP and BC active layers, suggesting that device physics are surprisingly robust with respect to the details of the BHJ morphology.
机译:聚合物:富勒烯本体异质结(BHJ)太阳能电池活性层可以通过传统的共混铸造(BC)来创建,在传统的共混铸造中,各组分在沉积之前在溶液中混合在一起;或者通过顺序加工(SqP),其中纯聚合物和富勒烯材料是从不同的解决方案按顺序投放。但是,目前尚不完全了解SqP与BC的相对优点,因为在两种处理技术之间还没有等效的(组成和厚度匹配的层)比较。尚未比较匹配的SqP和BC器件的主要原因是因为尚未准确知道SqP有源层的组成。在本文中,我们提出了一种精确测量SqP活性层中聚富勒烯薄膜组成的新技术,这使我们能够对SqP和传统BC制造的严格匹配组成和厚度匹配的BHJ有机太阳能电池进行首次比较。我们发现,在最佳的光伏设备中,SqP活性层与其优化的BC对应层的组成非常相似(≈44-50质量%PCBM)。然后,我们对厚度和成分匹配的P3HT:PCBM SqP和BC有源层的形态和器件特性进行了深入研究,以更好地了解这两种处理方法的优缺点。对于我们的匹配设备,我们发现小面积SqP电池的性能优于BC电池,这归因于其优异的薄膜质量和来自更多结晶P3HT的增强的光吸收。 SqP有源层的增强的薄膜质量还可以在较大面积的设备中实现更高的性能和明显更高的重现性,这表明SqP比传统的BC方法更易于缩放。 X射线衍射,紫外可见吸收和能量过滤的透射电子层析成像共同显示,与同等处理的BC活性层相比,退火的SqP活性层具有更精细的共混物形态以及更多的结晶聚合物和富勒烯域。通过线性增加电压(CELrV)测量与X射线光电子能谱法相结合的电荷提取,还表明,与匹配的BC有源层相比,SqP膜的顶部(非基板)界面在PCBM中含量略高。尽管在体相和垂直形态上存在这些明显的差异,但瞬态光电压,瞬态光电流和亚间隙外部量子效率测量结果都表明,在P3HT:PCBM异质结处发生的界面电子过程在退火退火的SqP和BC有源层中基本相同,这表明就BHJ形态的细节而言,设备物理学令人惊讶地强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号