...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Interslit Coupling via Ultrafast Dynamics across Gold-Film Hole Arrays
【24h】

Interslit Coupling via Ultrafast Dynamics across Gold-Film Hole Arrays

机译:通过跨金膜孔阵列的超快动力学进行缝间耦合

获取原文
获取原文并翻译 | 示例
           

摘要

One-dimensional arrays of submicrometer rectangular holes in 200 nm thin gold films are investigated using electron energy loss spectroscopy combined with scanning transmission electron microscopy (STEM-EELS). Improved energy resolution, down to 0.11 eV, is accomplished in our monobromated transmission electron microscope, allowing the reliable quantification of signals at loss energies as small as 0.43 eV. The standing-wave resonances of individual holes are thus investigated at nanometer-scale spatial resolution, focusing in particular on the effect of neighboring holes. We show how the coupling between holes is facilitated by surface plasmon polaritons (SPPs) propagating on the top and bottom surfaces of the separating metal-film strips. Thus, complex spatiotemporal coupling dynamics emerges, characterized by strong interslit interactions and a phase that can be controlled by varying the width of the metal strip between adjacent holes. Applying real-space real-time numerical simulations and exploiting the short interaction time of 300 keV electrons with the thin gold film, we reveal intriguing features of these ultrafast coupling mechanisms, including unusual line-narrowing and marked SPP signal enhancements in the corresponding EEL spectra. Complementary aspects of the far-field and near-field components in the SPP eigenstates are further demonstrated. Our combined analysis effectively equips STEM-EELS with an excellent temporal resolution and further yields a consistent description of the entangled femtosecond-scale SPP dynamics.
机译:使用电子能量损失谱结合扫描透射电子显微镜(STEM-EELS),研究了200 nm薄金膜中亚微米矩形孔的一维阵列。在我们的单溴化透射电子显微镜中,可以将能量分辨率提高到低至0.11 eV,从而可以可靠地定量损失能量仅为0.43 eV的信号。因此,在纳米尺度的空间分辨率下研究了单个孔的驻波共振,尤其着眼于相邻孔的影响。我们展示了如何通过在分离的金属膜条的顶部和底部表面上传播的表面等离振子极化子(SPP)促进孔之间的耦合。因此,出现了复杂的时空耦合动力学,其特征在于强烈的缝间相互作用以及可通过改变相邻孔之间的金属带宽度来控制的相位。应用实时实时数值模拟并利用300 keV电子与金薄膜的短相互作用时间,我们揭示了这些超快速耦合机制的有趣特征,包括相应的EEL谱中异常的线变窄和SPP信号增强。 SPP本征态的远场和近场成分的互补方面得到了进一步证明。我们的综合分析有效地为STEM-EELS提供了出色的时间分辨率,并进一步给出了纠缠的飞秒级SPP动力学的一致描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号