...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Evolution of Structure and Activity of Alloy Electrocatalysts during Electrochemical Cycles: Combined Activity, Stability, and Modeling Analysis of PtlrCo(7:1:7) and Comparison with PtCo(1:1)
【24h】

Evolution of Structure and Activity of Alloy Electrocatalysts during Electrochemical Cycles: Combined Activity, Stability, and Modeling Analysis of PtlrCo(7:1:7) and Comparison with PtCo(1:1)

机译:合金化学催化剂在电化学循环中的结构和活性演变:PtlrCo(7:1:7)的组合活性,稳定性和模型分析以及与PtCo(1:1)的比较

获取原文
获取原文并翻译 | 示例

摘要

This study explores the changes in bulk composition/ structure and oxygen reduction activity of two alloys, Pt7IrCo7 and PtCo, caused by Co leaching during electrochemical cycles and as a result of membrane electrode assembly (MEA) fabrication procedures. Exposure to liquid electrolyte and electrochemical cycles in a rotating disc electrode (RDE) environment resulted in substantial Co loss and no stabilization from the low levels of Ir used in the ternary material. The true composition of the ternary material was determined as Pt8IrCo3 following initial exposure to 0.1 M HClO4 (before cycling) and Pt_(11)IrCo4 after 5000 cycles. Density functional theory (DFT) modeling of the cycled catalyst compositions indicated that structures with Pt-rich upper layers would show the highest stability; however, addition of 0.25 ML oxygen adsorption favored Co segregation from second and third atomic layers. The high initial activities (>0.44A/mgPt) achieved in the RDE environment decreased with cycles and were not reproduced in MEAs. X-ray diffraction (XRD) analysis revealed a measurable increase in lattice parameter caused by the MEA preparation procedure, consistent with Co (and some Ir) leaching into the ionomer phase and relaxation of the lattice. MEA fabrication procedures and cycling in 1 M H2SO4 at 80° C showed greater changes to catalyst structure and increased Ir and Co loss compared to exposing the catalyst to RDE like conditions (0.1 M HClO4, RT) explaining the observed discrepancy in activity between RDE and MEA.
机译:这项研究探讨了两种合金Pt7IrCo7和PtCo的整体组成/结构和氧还原活性的变化,这些变化是由于电化学循环中的Co浸出和膜电极组件(MEA)的制造程序所致。在旋转圆盘电极(RDE)环境中暴露于液体电解质和电化学循环会导致大量的Co损失,并且由于三元材料中使用的Ir含量低而无法稳定。在最初暴露于0.1 M HClO4(循环之前)和5000次循环之后的Pt_(11)IrCo4之后,确定三元材料的真实组成为Pt8IrCo3。循环催化剂组合物的密度泛函理论(DFT)建模表明,具有富Pt上层的结构将显示出最高的稳定性。然而,添加0.25 ML的氧吸附有利于Co从第二和第三原子层中偏析。在RDE环境中实现的高初始活性(> 0.44A / mgPt)随循环而降低,并且在MEA中未复制。 X射线衍射(XRD)分析表明,由MEA制备程序引起的晶格参数可测量地增加,这与Co(和某些Ir)浸入离聚物相和晶格弛豫一致。与将催化剂置于类似RDE的条件(0.1 M HClO4,RT)下相比,MEA的制备程序和在80°C下于1 M H2SO4中循环显示出更大的催化剂结构变化,并增加了Ir和Co损失,这说明了观察到的RDE与活性之间的差异。 MEA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号