首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Energy Transfer in Near-Orthogonally Arranged Chromophores Separated through a Single Bond
【24h】

Energy Transfer in Near-Orthogonally Arranged Chromophores Separated through a Single Bond

机译:通过单键分离的近正交排列的发色团中的能量转移

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A combined experimental and theoretical study shows a significant barrier (ca. 100 kj/mol) to rotation through the interchromophoric carbon—carbon single covalent (1.49 A) bond between the naphthalenimide and perylenimide units that prevents coplanarization of the two units in the dyad NP, thereby forcing them to act as independent chromophores/redox centers. Upon photoexcitation, highly efficient energy transfer is observed from the naphthalenimide (energy donor) to the perylenimide (energy acceptor) moiety predominantly through Coulombic coupling, completely isolating the orbital overlap (Dexter-type) interaction between the chromophoric units at such short separation by virtue of their orthogonal arrangement. Because Fdrster s ideal-dipole approximation ignores the contribution from significant higher-order Coulombic interactions at such short distances between donor and acceptor moieties, the complete coupling was computed from the transition densities, giving an estimate of the energy-transfer rate from the naphthalenimide donor to the perylenimide acceptor of k_(EF) = 2.2 X 10~(10) s~(-1), in agreement with observations. Ultrafast excitation energy (ca. 40 ps, 90%) and electron (<0.5 ps, 10%) transfer from the singlet excited state of naphthalenimide to the perylenimide moiety competes with further delayed processes in the conjugate NP. Upon excitation at 345 nm, conjugate NP exhibits near-quantitative energy transfer in conjunction with solvent-polarity-dependent (solvatochromic) perylenimide fluorescence, resulting in a remarkable Stoke's shift of ca. 175—240 nm. Favorable photophysical properties such as high fluorescence quantum yield, wide excitation range, ultrafast energy transfer, marginal electron transfer, and large Stoke's shift make this conjugate a potential candidate for biological applications.
机译:组合的实验和理论研究表明,通过萘并亚胺和亚苄基亚胺单元之间的发色间碳-碳单共价键(1.49 A)键旋转时,阻隔旋转(约100 kj / mol)存在显着障碍,从而阻止了dyad NP中两个单元的共平面化,从而迫使它们充当独立的生色团/氧化还原中心。光激发后,观察到高效的能量从萘二酰亚胺(能量供体)到邻苯二酰亚胺(能量受体)部分的转移,主要是通过库伦偶合,通过这种短暂分离,完全分离了发色单元之间的轨道重叠(Dexter型)相互作用它们的正交排列。因为Fdrster的理想偶极近似忽略了在供体和受体部分之间如此短的距离上显着的高阶库伦相互作用的贡献,所以从跃迁密度计算出了完整的耦合,从而估算了萘二甲酰亚胺供体的能量转移速率与观察值一致,得出k_(EF)= 2.2 X 10〜(10)s〜(-1)的亚邻苯二甲酰亚胺受体。超快激发能(约40 ps,90%)和电子(<0.5 ps,10%)从萘二甲酰亚胺的单重激发态转移至全亚胺部分,与共轭NP中的进一步延迟过程竞争。在345 nm激发后,结合物NP表现出近乎定量的能量转移,并伴随着溶剂极性依赖性(溶剂变色)过亚胺酰亚胺荧光,导致ca的明显斯托克位移。 175-240纳米。良好的光物理性质,如高荧光量子产率,宽激发范围,超快能量转移,边际电子转移和较大的斯托克频移,使其成为生物应用的潜在候选物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号