首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles
【24h】

Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles

机译:铝纳米粒子熔融前后氧化铝壳和铝芯的微观结构行为

获取原文
获取原文并翻译 | 示例
           

摘要

The oxidation mechanism of nanoaluminumparticles, nominally employed as fuel component, is still an unsettled problem, because of the complex nature of thermo-mechanical properties of the oxide shell surrounding the elemental core. Although mechanical breakage of the alumina shell upon or after melting of aluminum core has been thought to play a key role in the combustion of aluminum nanoparticles, there has been little direct evidence. In this study, the micro-structural behaviors of Al core and alumina shell lattices were investigated with increasing temperatures. Three in situ techniques, high-temperature X-ray diffraction analysis, hot-stage transmission electron microscopy, and high-resolution trans-mission electron microscopy for heat-treated samples, were employed to probe the thermal behaviors of aluminum and alumina lattices before and after melting of the aluminum core. High-temperature X-ray diffraction analysis revealed that nano aluminum lattice was initially expanded under tension at room temperature, and then when heated passed through a zero-strain state at ~300 °C. Upon further heating above the bulk melting temperature of aluminum, the aluminum lattice expanded under almost no constraint. This interesting observation, which is contrary to almost all of the previous results and models, was ascribed to the inhomogeneous (localized) crystalline phase transformation of amorphous alumina. High-resolution transmission electron microscopy and in situ hot-stage transmission electron microscopy evidenced localized phase transformation accompanied by a significant shell thickening, presumably resulting from diffusion processes of Al cations and O anions, which is to absorb the pressure built in aluminum core, by creating a more ductile shell.
机译:由于包围元素核的氧化物壳的热机械性质的复杂性质,名义上用作燃料组分的纳米铝的氧化机理仍未解决。尽管铝壳熔化时或熔化后氧化铝壳的机械断裂被认为在铝纳米颗粒燃烧中起关键作用,但几乎没有直接证据。在这项研究中,随着温度的升高,研究了铝核和氧化铝壳晶格的微观结构行为。使用三种原位技术,分别对热处理后的样品进行高温X射线衍射分析,热台透射电子显微镜和高分辨率透射电子显微镜,以探测铝和氧化铝晶格的热行为。铝芯熔化后。高温X射线衍射分析表明,纳米铝晶格首先在室温下处于拉伸状态下膨胀,然后在加热至约300°C时经历零应变状态。在进一步加热到铝的体融温度以上时,铝晶格几乎没有限制地膨胀。这个有趣的发现与几乎所有先前的结果和模型相反,归因于非晶态氧化铝的不均匀(局部)结晶相转变。高分辨率透射电子显微镜和原位热阶段透射电子显微镜证明,局部相变伴随着明显的壳增厚,这可能是由于铝阳离子和O阴离子的扩散过程所致,该过程吸收铝核中的压力,创造出更具延展性的外壳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号