...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling
【24h】

Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling

机译:铝芯氧化物壳纳米颗粒内的过热和熔化,可实现多种加热速率:多物理场相场建模

获取原文
获取原文并翻译 | 示例
           

摘要

The external surface of metallic particles is usually covered by a thin and strong oxide shell, which significantly affects superheating and melting of particles. The effects of geometric parameters and heating rate on characteristic melting and superheating temperatures and melting behavior of aluminum nanoparticles covered by an oxide shell were studied numerically. For this purpose, the multiphysics model that includes the phase field model for surface melting, a dynamic equation of motion, a mechanical model for stress and strain simulations, interface and surface stresses, and the thermal conduction model including thermoelastic and thermo-phase transformation coupling as well as transformation dissipation rate was formulated. Several nontrivial phenomena were revealed. In comparison with a bare particle, the pressure generated in a core due to different thermal expansions of the core and shell and transformation volumetric expansion during melting, increases melting temperatures with the Clausius-Clapeyron factor of 60 K GPa(-1). For the heating rates Q <= 10(9) K s(-1), melting temperatures ( surface and bulk start and finish melting temperatures, and maximum superheating temperature) are independent of Q. For Q >= 10(12) K s(-1), increasing Q generally increases melting temperatures and temperature for the shell fracture. Unconventional effects start for Q <= 1012 K s(-1) due to kinetic superheating combined with heterogeneous melting and geometry. The obtained results are applied to shed light on the initial stage of the melt-dispersion-mechanism of the reaction of Al nanoparticles. Various physical phenomena that promote or suppress melting and affect melting temperatures and temperature of the shell fracture for different heating-rate ranges are summarized in the corresponding schemes.
机译:金属颗粒的外表面通常被薄而结实的氧化物壳覆盖,这显着影响颗粒的过热和熔化。数值研究了几何参数和加热速率对被氧化物壳覆盖的铝纳米颗粒特征熔融和过热温度以及熔融行为的影响。为此,多物理场模型包括用于表面熔化的相场模型,运动的动态方程,用于应力和应变模拟的机械模型,界面和表面应力以及包括热弹性和热相转换耦合的热传导模型以及转化耗散率。揭示了一些非平凡的现象。与裸露的粒子相比,由于核和壳的不同热膨胀以及熔化过程中相变体积膨胀而在核中产生的压力以60 K GPa(-1)的Clausius-Clapeyron因子提高了熔化温度。对于加热速率Q <= 10(9)K s(-1),熔化温度(表面和主体的开始和结束熔化温度以及最大过热温度)与Q无关。对于Q> = 10(12)K s (-1),增加Q通常会增加熔化温度和壳破裂温度。由于动力学过热结合异质熔化和几何形状,Q <= 1012 K s(-1)开始出现非常规效应。所获得的结果用于阐明Al纳米颗粒反应的熔融分散机理的初始阶段。在相应的方案中总结了各种物理现象,这些物理现象在不同的​​加热速率范围内促进或抑制熔化并影响熔化温度和壳破裂温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号