...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption
【24h】

Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption

机译:有机配体官能化对多孔对苯二甲酸铁金属有机骨架型材料在烃吸附中呼吸的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A combination of manometry, X-ray powder diffraction (XRPD), and molecular modeling has been used to show that the functionalization of the flexible MIL-53(Fe)-X materials (MIL stands for Materials of the Lavoisier Institute; X = CH3, Cl, Br, NH2) modifies the adsorption process of normal alkanes, by facilitating pores filling as compared to that of the nonmodified MIL-53(Fe) analogue. The adsorption isotherms show that these materials undergo steps at pressures specific for each guest and functional group, associated with structural transitions as corroborated by the simulated isotherms and XRPD data. With the exception of methane, a transition from the closed pore form to the large pore formoccurs through one intermediate pore form upon adsorption, thus differing from the case of the nonmodiiied MIL-53(Fe) where two intermediate pore forms are observed. The transitions are governed by a combination of factors, including energetic, kinetic, and steric aspects with, however, transition pressures becoming increasingly lower with increasing number of C atoms on the adsorbate. This can be rationalized in terms of increased host-guest interactions. In addition, molecular modeling gives insights into the adsorption mechanism, in terms of the arrangement of the molecules within the pores, allowing the rationalization of the different amounts of n-nonane adsorbed in relation to the other molecules. Finally, the arrangement of the molecules within the pores also plays a role in the kinetics of the adsorption process, which shows that the C6 (n-hexane) molecules require more time to reach a state of static equilibrium than the C9 (n-nonane) molecules, due to their greater degree of freedom resulting from their alignment along the pores.
机译:测压,X射线粉末衍射(XRPD)和分子模型的组合已被用来显示柔性MIL-53(Fe)-X材料的功能化(MIL代表Lavoisier Institute of Materials; X = CH3 ,Cl,Br,NH2)与未修饰的MIL-53(Fe)类似物相比,通过促进孔填充来改善普通烷烃的吸附过程。吸附等温线表明,这些材料在每个客体和官能团特定的压力下经历了与模拟等温线和XRPD数据所证实的结构转变相关的步骤。除甲烷外,吸附时会通过一种中间孔形式从封闭孔形式过渡到大孔形式,因此与观察到两种中间孔形式的未改性MIL-53(Fe)情况不同。过渡受包括能量,动力学和空间方面在内的多种因素共同控制,但是,随着吸附物上C原子数量的增加,过渡压力变得越来越低。可以通过增加主机与访客的交互来合理化。此外,分子模型根据孔内分子的排列方式提供了吸附机理的见解,从而使相对于其他分子吸附的正壬烷的不同吸附量得以合理化。最后,孔内分子的排列在吸附过程的动力学中也起作用,这表明C6(正己烷)分子比C9(正壬烷)需要更多的时间才能达到静态平衡状态。 )分子,因为它们沿孔排列的自由度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号