【24h】

Site Substitution of Ti in NaAlH4 and Na3AlH6

机译:Ti在NaAlH4和Na3AlH6中的位取代

获取原文
获取原文并翻译 | 示例
           

摘要

The hydrogen release and uptake kinetics of sodium alanate, NaAlH4, are greatly improved after doping with small amounts of transition metals, such as Ti. However, after 15 years of active research, an atomic-level understanding of the effect of Ti on the reaction rate is still lacking. One theory suggests that Ti atoms may be incorporated in bulk crystals of NaAlH4 where they exist as charged impurities, increasing the Fermi level, decreasing the formation energies of native charged defects, and therefore aiding in mass transport via bulk diffusion. Using first-principles density-functional theory (DFT) calculations, we examine the local structure, charge states, and energetics of substitutional Ti impurities in both NaAlH4 and its decomposition product, Na3AlH6. In contrast to previous studies which considered only simple metal substitutions, we study a much broader class of possible substitutions by varying the number of hydrogen ions bound to Ti and charge states of the resulting aggregate defects. The minimum energy configurations have been determined using ab initio molecular dynamics simulated annealing runs followed by conjugate gradientenergy minimization. Temperature-dependent free energies, which have been shown to be a necessary component when analyzing the equilibrium concentrations of native defects in sodium alanates, are included in this study. We find that the lowest Ti defect in NaAlH4 is a substitution on the Al site with two additional H atoms, in an overall q = - 1 charge state; it is compensated by the formation of positively charged A1H4 vacancies. As a result, the concentration of A1H4 vacancies is greatly increased at low temperatures, but this effect becomes less significant at typical temperatures of hydrogen release where the intrinsic concentration of AlH4 vacancies reaches that of substitutional Ti (e.g., around 350 K for 0.001% Ti). The predicted change in the Fermi level in NaAlH4 is not large enough to account for the experimentally observed lowering of the activation energy, ruling out bulk substitution of Ti as the main catalytic mechanism in Ti-doped sodium alanates. For Na3AlH6, we find a competition between two defect structures, one of them being a Ti substitution on the Na site in a q = +1 charge state and the other being a neutral Ti substitution on the Al site with an additional bound H. Ti substitution in Na3AlH6 is found to have insignificant effects on the Fermi level (less than 20 meV at T = 400 K) and concentrations of native defects.
机译:掺杂少量过渡金属(例如Ti)后,铝酸钠NaAlH4的氢释放和吸收动力学得到了极大的改善。但是,经过15年的积极研究,仍然缺乏对Ti对反应速率影响的原子级理解。一种理论认为,Ti原子可以掺入NaAlH4的块状晶体中,在那里它们以带电杂质的形式存在,从而增加了费米能级,降低了天然带电缺陷的形成能,因此有助于通过块体扩散进行质量传输。使用第一原理密度泛函理论(DFT)计算,我们检查了NaAlH4及其分解产物Na3AlH6的局部结构,电荷状态和取代Ti杂质的能级。与仅考虑简单金属取代的先前研究相比,我们通过改变与Ti结合的氢离子的数目以及所产生的聚集缺陷的电荷状态,研究了范围更广泛的可能取代。最低能量配置已使用从头算分子动力学模拟退火运行,然后进行共轭梯度能量最小化的方法确定。这项研究包括了随温度变化的自由能,该自由能在分析铝酸钠中自然缺陷的平衡浓度时已被证明是必不可少的。我们发现,NaAlH4中最低的Ti缺陷是在Al位点上被两个额外的H原子取代,整体上q =-1的电荷状态;它通过形成带正电的AlH4空位来补偿。结果,在低温下AlH4空位的浓度大大增加,但是在典型的氢释放温度下,AlH4空位的本征浓度达到替代Ti的固有浓度(例如,0.001%Ti时约为350 K)时,这种影响变得不那么明显。 )。 NaAlH4中费米能级的预测变化不够大,不足以解释实验观察到的活化能降低,排除了钛的大量替代是掺钛铝酸钠中主要的催化机理。对于Na3AlH6,我们发现了两个缺陷结构之间的竞争,其中一个是在aq = +1电荷状态下Na位点上的Ti取代,另一个是在Al位点上带有附加键合H的中性Ti取代。已发现Na3AlH6中的Na2AlH6对费米能级(T = 400 K时小于20 meV)和天然缺陷浓度影响不大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号