...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures: An Efficient Electrocatalyst for Fuel Cell Application
【24h】

Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures: An Efficient Electrocatalyst for Fuel Cell Application

机译:方便的原位合成多壁碳纳米管支撑的花状Pt纳米结构:燃料电池应用的高效电催化剂

获取原文
获取原文并翻译 | 示例

摘要

Multiwall carbon nanotube (MWCNT)-supported flowerlike Pt nanosttucture with pronounced electrocatalytic activity in the reduction of oxygen and oxidation of methanol was synthesized by wet chemical hydrogen reduction route. The Pt nanostructures on the MWCNT were characterized by transmission electron microscopic, field emission scanning electron microscopic, X-ray diffraction (XRD), X-ray photoelectron spectroscopic, and electrochemical measurements. The Pt nanostructures on MWCNT have flowerlike morphology with an average size of 80 nm. XRD and selective area electron diffraction measurements show that the Pt nanoflowers are crystalline and have face centered cubic structure. The flowerlike Pt nanostructure shows excellent electrocatalytic activity toward oxygen reduction and methanol oxidation reactions. The electrocatalytic performance of the nanoelectrocatalyst was evaluated in terms of catalytic current density, stability, and reduction/oxidation potential. The particle loading strongly controls the electrocatalytic activity. High-catalytic current density was obtained at lower loading of the nanoelectrocatalyst. The kinetics of oxygen reduction reaction was analyzed using rotating ring-disk electrode system. The nanoelectrocatalyst favors the 4-electron pathway for the reduction of oxygen at favorable potential. The electrochemical impedance spectroscopic (EIS) measurement was used to evaluate the performance of the catalyst toward methanol oxidation. The BIS response of the electrode toward oxidation of methanol strongly depends on the electrode potential. Capacitive, inductive, and pseudoinductlve behaviors, depending on the electrode potential, were observed. The charge transfer resistance decreases gradually while increasing the potential from 0.5 to 0.8 V. Negative impedance was obtained at the potential of 1.0 V. The electrocatalytic performance of flowerlike nanostructure is significantly higher than the conventional spherical nanoparticles. The shape and surface morphology of the nanoparticles have profound effect in their electrocatalytic activity.
机译:通过湿化学氢还原法合成了多壁碳纳米管负载的花状Pt纳米结构,该结构具有显着的电催化活性,可还原氧气和甲醇氧化。通过透射电子显微镜,场发射扫描电子显微镜,X射线衍射(XRD),X射线光电子能谱和电化学测量来表征MWCNT上的Pt纳米结构。 MWCNT上的Pt纳米结构具有花状形态,平均大小为80 nm。 XRD和选择性区域电子衍射测量表明,Pt纳米花是晶体并且具有面心立方结构。花状的Pt纳米结构对氧还原和甲醇氧化反应显示出优异的电催化活性。根据催化电流密度,稳定性和还原/氧化电势评价纳米电催化剂的电催化性能。颗粒负载强烈地控制了电催化活性。在较低的纳米电催化剂负载下获得了高催化电流密度。使用旋转环盘电极系统分析氧还原反应的动力学。纳米电催化剂有利于4-电子途径以有利的电位还原氧。电化学阻抗谱(EIS)测量用于评估催化剂对甲醇氧化的性能。电极对甲醇氧化的BIS响应很大程度上取决于电极电势。观察到电容,电感和伪电感行为,具体取决于电极电势。电荷转移电阻逐渐降低,同时电位从0.5 V增加到0.8V。在1.0 V电位下获得负阻抗。花状纳米结构的电催化性能显着高于常规球形纳米颗粒。纳米颗粒的形状和表面形态在其电催化活性方面具有深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号