首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor
【24h】

Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor

机译:探索驱动力和电子接受态密度依赖的界面电子转移动力学:抑制铟锡氧化物半导体上的单个分子的荧光闪烁。

获取原文
获取原文并翻译 | 示例
           

摘要

Photoinduced, interfacial electron transfer (ET) dynamics between m-ZnTCPP and Sn-doped In2O3 (ITO) film has been studied using single-molecule photon-stamping spectroscopy. The observed ET dynamics of single m-ZnTCPP adsorbed on ITO was compared with that of mZnTCPP adsorbed on TiO2 NPs with and without applied electric potential. Compared to m-ZnTCPP on the TiO2 NP surface, m-ZnTCPP on the ITO surface shows a reduced lifetime as well as suppressed blinking and a quasi continuous distribution of fluorescence intensities, presumably due to higher electron density in ITO. The higher electron density leads to the occupancy of CB acceptor states/trap states, which supports a higher backward electron transfer (BET) rate that results in a quasi-continuous distribution of fluorescence intensities. The dependence of BET rate on electron density and charge trapping is consistent with our previous observations of quasi continuous distribution of fluorescence intensities of m-ZnTCPP on TiO2 NPs with applied negative potential across the dye TiO2 interface. The quasi-continuous distribution of fluorescence intensities in both cases of m-ZnTCPP on the ITO surface and m-ZnTCPP on TiO2 NPs with applied negative potential indicates that the electron density in the semiconductor plays a dominant role in dictating the changes in rates of charge transfer, rather than the relative energetics between electrons in the semiconductor and the oxidized sensitizer.
机译:使用单分子光子冲压光谱技术研究了m-ZnTCPP和Sn掺杂的In2O3(ITO)薄膜之间的光诱导界面电子转移(ET)动力学。将观察到的单个m-ZnTCPP吸附在ITO上的ET动态与吸附在有和没有施加电势的TiO2 NPs上的mZnTCPP的ET动态进行比较。与TiO2 NP表面上的m-ZnTCPP相比,ITO表面上的m-ZnTCPP寿命缩短,闪烁现象得到抑制,荧光强度准连续分布,这可能是由于ITO中的电子密度较高所致。较高的电子密度导致CB受体态/陷阱态的占据,这支持较高的向后电子转移(BET)速率,从而导致荧光强度准连续分布。 BET速率对电子密度和电荷俘获的依赖性与我们先前的观察结果一致,即在染料TiO2界面上施加负电势时,m-ZnTCPP在TiO2 NP上的荧光强度准连续分布。在ITO表面上的m-ZnTCPP和施加负电的TiO2 NPs上的m-ZnTCPP情况下,荧光强度的准连续分布表明,半导体中的电子密度在决定电荷速率的变化中起主要作用。转移,而不是半导体中电子与氧化敏化剂之间的相对能。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号