首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Hopping versus Tunneling Mechanism for Long-Range Electron Transfer in Porphyrin Oligomer Bridged Donor- Acceptor Systems
【24h】

Hopping versus Tunneling Mechanism for Long-Range Electron Transfer in Porphyrin Oligomer Bridged Donor- Acceptor Systems

机译:卟啉低聚物桥接供体-受体系统中长距离电子转移的跳跃与隧穿机理

获取原文
获取原文并翻译 | 示例
           

摘要

Achieving long-range charge transport in molecular systems is interesting to foresee applications of molecules in practical devices. However, designing molecular systems with pre-defined wire-like properties remains difficult due to the lack of understanding of the mechanism for charge transfer. Here we investigate a series of porphyrin oligomer-bridged donor-acceptor systems Fc-P-n-C-60 (n = 1-4, 6). In these triads, excitation of the porphyrin-based bridge generates the fully charge-separated state, Fc(center dot+)-P-n-C-60(center dot-) through a sequence of electron transfer steps. Temperature dependence of both charge separation (Fc-P-n*-C-60 -> Fc-P-n(center dot+)-C-60(center dot-)) and recombination (Fc(center dot+)-P-n-C-60(center dot-) -> Fc-P-n-C-60) processes was probed by time-resolved fluorescence and femtosecond transient absorption. In the long triads, two mechanisms contribute to recombination of Fc(center dot+)-P-n-C-60(center dot-) to the ground state. At high temperatures (>= 280 K), recombination via tunneling dominates for the entire series. At low temperatures (<280 K), unusual crossover from tunneling to hopping occurs in long triads. This crossover is rationalized by the increased lifetimes of Fc(center dot+)-P-n-C-60(center dot-); hence the higher probability of reforming Fc-P-n(center dot+)-C-60(center dot-) during recombination. We demonstrate that at 300 K, the weak distance dependence for charge transfer (beta = 0.028 angstrom(-1)) relies on tunneling rather than hopping.
机译:在分子系统中实现长距离电荷传输对预见分子在实际设备中的应用很有趣。然而,由于缺乏对电荷转移机理的理解,设计具有预定线状性质的分子系统仍然很困难。在这里,我们研究了一系列卟啉低聚物桥接的供体-受体系统Fc-P-n-C-60(n = 1-4,6)。在这些三单元组中,基于卟啉的桥的激发通过一系列电子转移步骤生成了完全电荷分离的状态Fc(中心点+)-P-n-C-60(中心点-)。电荷分离(Fc-Pn * -C-60-> Fc-Pn(中心点+)-C-60(中心点-))和重组(Fc(中心点+)-PnC-60(中心点- )-> Fc-PnC-60)过程通过时间分辨荧光和飞秒瞬态吸收进行探测。在长三联体中,有两种机制有助于Fc(中心点+)-P-n-C-60(中心点-)重组为基态。在高温(> = 280 K)下,通过隧穿进行的重组占整个系列的主导。在低温(<280 K)下,长的三重轴会发生从隧道到跳频的异常跨越。通过增加Fc(中心点+)-P-n-C-60(中心点-)的寿命来合理化这种交叉;因此重组过程中重组Fc-P-n(中心点+)-C-60(中心点-)的可能性更高。我们证明了在300 K时,电荷转移的弱距离依赖性(β= 0.028埃(-1))依赖于隧穿而不是跳跃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号