...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Computational Study of Pressure-Driven Gas Transport in Nanostructured Carbons: An Alternative Approach
【24h】

Computational Study of Pressure-Driven Gas Transport in Nanostructured Carbons: An Alternative Approach

机译:纳米结构碳中压力驱动气体传输的计算研究:一种替代方法

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrated a computationally efficient method in nonequilibrium molecular dynamics (NEMD) simulations to study pressure-driven gas transport in porous media. The reflecting particle method (RPM)(14) was used to establish a steady-state gas flow along the transport channel, and the gas density in the feed chamber was properly adjusted to allow a constant pressure drop under various conditions by using a perturbation relaxation loop developed here. This method was validated for methane flow through carbon nanotubes over a wide range of temperatures, giving results comparable to those of the commonly used dual control volume grand canonical molecular dynamics (DCV-GCMD) method but at least 20 times more efficient, even though the transport condition tested is favorable for the latter. This made it possible to perform systematic studies on the effects of temperature, pressure, and channel size on the transport behaviors. Our study shows that adsorption density varies significantly with temperature, which dramatically influences the transport mechanisms, especially in small channels at low temperatures and under high pressures. This newly developed NEMD method can be readily extended to study gas transport through channels with more complex surface morphology.
机译:我们在非平衡分子动力学(NEMD)模拟中演示了一种计算有效的方法,以研究多孔介质中压力驱动的气体传输。使用反射粒子法(RPM)(14)建立沿输送通道的稳态气流,并通过扰动松弛适当调节进料室中的气体密度,以在各种条件下实现恒定的压降循环在这里开发。该方法已经过甲烷在宽温度范围内流经碳纳米管的验证,其结果可与常用的双重控制体积大规范分子动力学(DCV-GCMD)方法相媲美,但效率至少高出20倍,即使测试的运输条件对后者有利。这样就可以对温度,压力和通道尺寸对运输行为的影响进行系统的研究。我们的研究表明,吸附密度随温度变化很大,这极大地影响了传输机理,尤其是在低温和高压下的小通道中。这种新开发的NEMD方法可以很容易地扩展到研究气体通过具有更复杂表面形态的通道的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号