...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Determining Excitation-Energy Transfer Times and Mechanisms from Stochastic Time-Dependent Density Functional Theory
【24h】

Determining Excitation-Energy Transfer Times and Mechanisms from Stochastic Time-Dependent Density Functional Theory

机译:从随机时变密度泛函理论确定激发-能量传递的时间和机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We developed an approach for calculating excitation-energy transfer times in supermolecular arrangements based on stochastic time-dependent density functional theory (STDDFT). The combination of real-time propagation and the stochastic Schrodinger equation with a Kohn—Sham Hamiltonian allows for simulating how an excitation spreads through an assembly of molecular systems. The influence that approximations, such as the dipole—dipole coupling approximation of Forster theory, have on energy-transfer times can be checked explicitly. As a first application of our approach we investigate a light-harvesting-inspired model ring system, calculating the time it takes for an excitation to travel from one side of the ring to the opposite side under ideal and perturbed conditions. Among other things we find that completely removing a molecule from the ring may inhibit energy transfer less than having an energetically detuned molecule in the ring. In addition, Forster's dipole coupling approximation may noticeably overestimate excitation-energy transfer efficiency.
机译:我们开发了一种基于随机时变密度泛函理论(STDDFT)计算超分子排列中激发能转移时间的方法。实时传播和随机Schrodinger方程与Kohn-Sham Hamiltonian的结合可以模拟激发如何通过分子系统的集合扩散。可以明确地检查诸如Forster理论的偶极-偶极耦合近似等近似对能量传输时间的影响。作为我们方法的第一个应用,我们研究了受光捕获启发的模型环系统,计算了在理想和扰动条件下激励从环的一侧传播到另一侧所花费的时间。除其他事项外,我们发现从环中完全去除分子与环中具有能量失谐分子相比,对能量转移的抑制作用较小。此外,Forster的偶极耦合近似值可能会明显高估激发能量的传递效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号