...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Electron—Nuclear and Electron—Electron Double Resonance Spectroscopies Show that the Primary Quinone Acceptor Q_A in Reaction Centers from Photosynthetic Bacteria Rhodobacter sphaeroides Remains in the Same Orientation Upon Light-Induced Reduction
【24h】

Electron—Nuclear and Electron—Electron Double Resonance Spectroscopies Show that the Primary Quinone Acceptor Q_A in Reaction Centers from Photosynthetic Bacteria Rhodobacter sphaeroides Remains in the Same Orientation Upon Light-Induced Reduction

机译:电子-核和电子-电子双共振光谱表明,光合细菌球形红细菌细菌反应中心中的初级醌受体Q_A在光诱导还原后保持相同方向。

获取原文
获取原文并翻译 | 示例
           

摘要

Reaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R-26 exhibit changes in the recombination kinetics of the charge-separated radical-pair state, P~(·+) Q_A~(·-), composed of the dimeric bacteriochlorophyll donor P and the ubiquinone-10 acceptor Q_A, depending on whether the RCs are cooled to cryogenic temperatures in the dark or under continuous illumination (Kleinfeld et al. Biochemistry 1984, 23, 5780-5786). Structural changes near redox-active cofactors have been postulated to be responsible for these changes in kinetics and to occur in the course of light-induced oxidation and reduction of the cofactors thereby assuring a high quantum yield. Here we investigated such potential light-induced structural changes, associated with the formation of P~(·+) Q_A~(·-), via pulsed electron-nuclear double resonance (ENDOR) at Q-band (34 GHz) and pulsed electron-electron double resonance (PELDOR) at W-band (95 GHz). Two types of light excitation have been employed for which identical RC samples were prepared: (a) one sample was frozen in the dark and then illuminated to generate transient P~(·+) QX_A~(·-), and (b) one was frozen under illumination which resulted in both trapped and transient P~(·+) QX_A~(·-) at 80 K. The hyperflne interactions between Q_A~(-·) and the protein were found to be the same in RCs frozen in the dark as in RCs frozen under illumination. Furthermore, these interactions are completely consistent with those observed in RC crystals frozen in the dark. Thus, Q_A remains in its binding site with the same position and orientation upon reduction. This conclusion is consistent with the result of our orientation-resolving PELDOR experiments on transient P~(·+) Q_A~(·-) radical pairs. However, these findings are incompatible with the recently proposed ~60° reorientation of Q_A upon its photoreduction, as deduced from an analysis of Q-band quantum-beat oscillations (Heinen et al. J. Am. Chem. Soc. 2007, 129,15935-15946). Such a large reorientation appears improbable, and our objections against this proposition are substantiated here in detail. Our results show that Q_A is initially in an orientation that is favorable for its light-driven reduction. This diminishes the reorganization requirements for fast electron reduction and high quantum efficiency.
机译:来自光合细菌球形红球菌R-26的反应中心(RCs)在电荷分离的自由基对状态P〜(·+)Q_A〜(·-)的重组动力学中表现出变化,由二聚体细菌叶绿素供体P和泛醌10受体Q_A,取决于RC是在黑暗中还是在连续光照下冷却至低温(Kleinfeld等人,Biochemistry 1984,23,5780-5786)。据推测,氧化还原活性辅因子附近的结构变化是造成这些动力学变化的原因,并且是在光诱导的氧化和辅因子还原的过程中发生的,从而确保了高量子产率。在这里,我们通过Q波段(34 GHz)和脉冲电子的脉冲电子-核双共振(ENDOR)研究了与P〜(·+)Q_A〜(·-)形成相关的潜在光诱导结构变化。电子双共振(PELDOR)在W波段(95 GHz)。已使用两种类型的光激发来制备相同的RC样品:(a)一种样品在黑暗中冷冻,然后照射以生成瞬态P〜(·+)QX_A〜(·-),(b)一种在80 K的光照下冷冻,导致捕获和瞬时的P_(·+)QX_A〜(·-)。Q_A〜(-·)和蛋白质之间的超微相互作用在冷冻的RCs中是相同的。如在RC中冻结的黑暗。此外,这些相互作用与在黑暗中冷冻的RC晶体中观察到的相互作用完全一致。因此,Q_A在还原时以相同的位置和方向保留在其结合位点。这一结论与我们对瞬态P〜(·+)Q_A〜(·-)自由基对的取向解析PELDOR实验的结果一致。然而,这些发现与最近提出的Q_A在光还原时〜60°重新定向是不相容的,这是根据对Q波段量子拍频振荡的分析得出的(Heinen等人,J。Am。Chem。Soc。2007,129, 15935-15946)。如此大的重新定位似乎是不可能的,并且我们在此详细提出了反对这一主张的反对意见。我们的结果表明,Q_A最初处于有利于其光驱动减小的方向。这减少了快速电子还原和高量子效率的重组要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号