首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Effect of Sorbed Methanol, Current, and Temperature on Multicomponent Transport in Nafion-Based Direct Methanol Fuel Cells
【24h】

Effect of Sorbed Methanol, Current, and Temperature on Multicomponent Transport in Nafion-Based Direct Methanol Fuel Cells

机译:吸附的甲醇,电流和温度对基于Nafion的直接甲醇燃料电池中多组分迁移的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 EGMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol—water incomplete mixing theories.
机译:液体进料直接甲醇燃料电池(DMFC)阴极排气中的CO2有两个来源:甲醇通过膜电极组件(MEA)扩散到阴极,在此催化氧化为CO2;另外,在阳极产生的一部分二氧化碳会通过MEA扩散到阴极。通过在线电化学质谱法(ECMS)在空气和H2阴极处监测阴极电势相关的CO2排放。通过甲醇/空气对甲醇/ H2 EGMS数据的减法归一化,可以精确确定甲醇和CO2的交叉速率,结果表明,甲醇降低了膜的粘度,从而增加了被吸附膜组件的扩散系数。最初,CO2的穿越随甲醇的法拉第氧化线性增加,达到温度相关的最大值,然后降低。随着甲醇从阳极/电解质界面被电化学消耗,膜粘度逐渐增加。当电流的扩散系数和膜CO2溶解度的电流依赖性超过法拉第生产的CO2时,就会出现最大交叉。通过电子自旋共振光谱法测量TEMPONE(2,2,6,6-四甲基-4-哌啶酮N-氧化物)自旋探针的旋转扩散,可以证实甲醇的增塑作用。甲醇穿越速率和电流密度之间的线性反比关系证实,在与运行DMFC有关的浓度下,不存在甲醇电渗透阻力。根据目前的质子溶剂化和甲醇-水不完全混合理论来解释甲醇的纯扩散传输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号