...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes
【24h】

Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes

机译:膜固定化对醋酸纤维素膜中双金属Fe / Ni纳米粒子的颗粒形成和三氯乙烯脱氯的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The use of membrane immobilization to carry out the batch dechlorination of trichloroethylene (TCE) using bimetallic Fe/Ni (4:1, Fe to Ni) nanoparticles in cellulose acetate membranes is examined using modeling of transport phenomenon based on experimental results. Membranes are synthesized using both gelation and solvent evaporation techniques for phase inversion. The reduction of metal ions within cellulose acetate phase-inversion membranes was accomplished using sodium borohydride reduction to obtain up to 2 wt % total metals. Characterization of the mixed-matrix structure reveals a bimodal particle distribution ranging between 18 and 80 nm within the membrane cross section. The distribution is the result of changes in the morphology of the cellulose acetate support. The diffusivity and linear partitioning coefficient for the chlorinated organic were measured and are 2.0 x 10(-8) cm(2).s(-1) and 3.5 x 10(-2) L.g(-1), respectively. An unsteady-state model for diffusion through a membrane with reaction was developed to predict experimental results with an error of only 7.2%. The error can be attributed to the lack of the model to account for loss of reactivity through pH effects, alloy effects (bimetallic ratio), and oxidation of nanoparticles. Simulations were run to vary the major transport variables, partitioning and diffusivity, and determine their impact on reaction kinetics. Of the two, diffusivity was less significant because it really only influences the time required for maximum TCE partitioning to the membrane to be achieved and has no effect on the limiting capacity of the membrane for TCE. Therefore, selection of an appropriate support material is crucial for development of highly reactive mixed-matrix membrane systems.
机译:基于实验结果,采用传输现象模型,研究了使用膜固定化技术在醋酸纤维素膜中使用双金属Fe / Ni(4:1,Fe与Ni的纳米粒子)对三氯乙烯(TCE)进行批量脱氯的方法。使用凝胶和溶剂蒸发技术合成膜以进行相转化。使用硼氢化钠还原可完成乙酸纤维素相转化膜中金属离子的还原,从而获得高达2 wt%的总金属。混合矩阵结构的表征揭示了膜横截面内18到80 nm之间的双峰颗粒分布。该分布是乙酸纤维素载体形态变化的结果。测量了氯化有机物的扩散系数和线性分配系数,分别为2.0 x 10(-8)cm(2).s(-1)和3.5 x 10(-2)L.g(-1)。建立了通过反应扩散通过膜的非稳态模型,以预测实验结果,误差仅为7.2%。该错误可归因于缺少模型,该模型无法解释由于pH效应,合金效应(双金属比)和纳米颗粒氧化而导致的反应性损失。运行模拟以改变主要的传输变量,分配和扩散率,并确定它们对反应动力学的影响。在这两者中,扩散率并不重要,因为扩散率实际上仅影响将最大TCE分配到膜所需的时间,而对膜的TCE极限容量没有影响。因此,选择合适的载体材料对于开发高反应性混合基质膜系统至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号