...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Internal Electric Field in Cytochrome C Explored by Visible Electronic Circular Dichroism Spectroscopy
【24h】

Internal Electric Field in Cytochrome C Explored by Visible Electronic Circular Dichroism Spectroscopy

机译:可见电子圆二色谱法研究细胞色素C中的内部电场

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electronic circular dichroism (ECD) is a valuable tool to explore the secondary and tertiary structure of proteins. With respect to heme proteins, the corresponding visible ECD spectra, which probe the chirality of the heme environment, have been used to explore functionally relevant structural changes in the heme vicinity. While the physical basis of the obtained ECD signal has been analyzed by Woody and co-workers in terms of multiple electronic coupling mechanism between the electronic transitions of the heme chromophore and of the protein (Hsu, M.C.; Woody, R.W. J. Am. Chem. Soc. 1971,93,3515), a theory for a detailed quantitative analysis of ECD profiles has only recently been developed (Schweitzer-Stenner, R.; Gorden, J. P.; Hagarman, A. J. Chem. Phys. 2007, 127, 135103). In the present study this theory is applied to analyze the visible ECD-spectra of both oxidation states of three cytochromes c from horse, cow and yeast. The results reveal that both B- and Q-bands are subject to band splitting, which is caused by a combination of electronic and vibronic perturbations. The B-band splittings are substantially larger than the corresponding Q-band splittings in both oxidation states. For the B-bands, the electronic contribution to the band splitting can be assigned to the internal electric field in the heme pocket, whereas the corresponding Q-band splitting is likely to reflect its gradient (Manas, E. S.; Vanderkooi, J. M.; Sharp, K. A. J. Phys. Chem. B 1999, 103, 6344). We found that the electronic and vibronic splitting is substantially larger in the oxidized than in the reduced state. Moreover, these states exhibit different signs of electronic splitting. These findings suggest that the oxidation process increases the internal electric field and changes its orientation with respect to the molecular coordinate system associated with the N—Fe—N lines of the heme group. For the reduced state, we used our data to calculate electric field strengths between 27 and 31 MV/cm for the investigated cytochrome c species. The field of the oxidized state is more difficult to estimate, owing to the lack of information about its orientation in the heme plane. Based on band splitting and the wavenumber of the band position we estimated a field-strength of ca. 40 MV/cm for oxidized horse heart cytochrome c. The thus derived difference between the field strengths of the oxidized and reduced state would contribute at least —55 kJ/mol to the enthalpic stabilization of the oxidized state. Our data indicate that the corresponding stabilization energy of yeast cytochrome c is smaller.
机译:电子圆二色性(ECD)是探索蛋白质二级和三级结构的宝贵工具。对于血红素蛋白,已经使用了探测血红素环境手性的相应可见ECD光谱来探索血红素附近的功能相关结构变化。尽管获得的ECD信号的物理基础已经由Woody及其同事根据血红素生色团和蛋白质的电子跃迁之间的多重电子耦合机制进行了分析(Hsu,MC; Woody,RWJ Am。Chem。Soc 1971,93,3515),一种用于ECD分布图的详细定量分析的理论直到最近才被开发出来(Schweitzer-Stenner,R。; Gorden,JP; Hagarman,AJ Chem。Phys.2007,127,135103)。在本研究中,该理论用于分析来自马,牛和酵母的三种细胞色素c的两种氧化态的可见ECD光谱。结果表明,B波段和Q波段都受到频带分裂的影响,这是由电子和振动扰动共同引起的。在两种氧化态下,B带分裂均显着大于相应的Q带分裂。对于B频段,可以将对频段划分的电子贡献分配给血红素袋中的内部电场,而相应的Q频段划分则可能反映其梯度(Manas,ES; Vanderkooi,JM; Sharp, KAJ Phys.Chem.B 1999,103,6344)。我们发现,氧化态的电子和振动分裂明显大于还原态。此外,这些状态表现出不同的电子分裂迹象。这些发现表明,氧化过程增加了内部电场并改变了其相对于与血红素基团的N-Fe-N线相关的分子坐标系的取向。对于还原态,我们使用我们的数据来计算所研究的细胞色素c物种在27至31 MV / cm之间的电场强度。由于缺乏关于其在血红素平面中的取向的信息,因此很难估计氧化态的场。根据频带分裂和频带位置的波数,我们估算出大约为的场强。氧化的马心脏细胞色素40 MV / cm由此推导的氧化态和还原态场强之间的差异将至少使氧化态的焓稳定化达到-55 kJ / mol。我们的数据表明,酵母细胞色素c的相应稳定能较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号