首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations
【24h】

Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations

机译:从分子动力学和蒙特卡洛模拟对聚合物膜的气体吸附和阻隔性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O-2, H2O (vapor), N-2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of temperatures between 250 and 650 K. The magnitudes of the calculated solubilities agree well with experimental results, and the trends with temperature are predicted correctly. The HCE method is used to predict the solubility constants at 298 K of water vapor and oxygen. The water vapor solubilities follow more closely the experimental trend of permeabilities, both ranging over 4 orders of magnitude. For oxygen, the calculated values do not follow entirely the experimental trend of permeabilities, most probably because at this temperature some of the polymers are in the glassy regime and thus are diffusion dominated. Our study also concludes large confidence limits are associated with the calculated Henry's constants. By investigating several factors (terminal ends of the polymer chains, void distribution, etc.), we conclude that the large confidence limits are intimately related to the polymer's conformational changes caused by thermal fluctuations and have to be regardedat least at microscaleas a characteristic of each polymer and the nature of its interaction with the solute. Reducing the mobility of the polymer matrix as well as controlling the distribution of the free (occupiable) volume would act as mechanisms toward lowering both the gas solubility and the diffusion coefficients.
机译:对于许多工业过程而言,设计具有改善的选择性渗透性的新材料非常重要。除扩散外,分子的溶解度对整个渗透过程也有很大贡献。这项研究提出了一种使用第一性原理预测方法通过模拟方法(分子动力学和蒙特卡洛)来计算诸如O-2,H2O(蒸气),N-2和CO2之类的气体在聚合物基体中的溶解系数的方法。广泛描述了五个聚合物模型(聚丙烯,聚乙烯醇,聚二氯乙烯,聚氯乙烯-三氟乙烯和聚对苯二甲酸乙二酯)的生成和平衡(退火)。对于每种聚合物,一组十个样品的平均密度和汉森溶解度与实验数据进行了很好的比较。对于聚对苯二甲酸乙二醇酯,比较了小(n = 10)和大(n = 100)之间的平均性能。结合能和应变能的玻尔兹曼平均值和概率密度分布表明,较小的集合在具有较高能量的采样配置中存在偏差。但是,来自较小集合的凝聚能密度最低的样本代表较大集合的平均值。在密度方面,低分子量聚合物通常平均具有较低的密度。但是,无限分子量的样品确实可以很好地代表实验密度。用两个集合计算的溶解度常数(大典范和亨利常数)在20%以内。对于每个聚合物样品,然后使用更快的(10x)亨利常数集合(HCE)从聚合物基质的150 ps的NPT动态计算出溶解度常数。讨论了各种因素(不良接触分数,迭代次数)对亨利常数精度的影响。为了根据实验结果验证计算结果,在250至650 K的温度范围内检查了聚丙烯中氮和二氧化碳的溶解度。计算的溶解度大小与实验结果吻合良好,并且可以正确预测温度的趋势。 HCE方法用于预测298 K下水蒸气和氧气的溶解度常数。水蒸气的溶解度更紧密地遵循渗透率的实验趋势,均超过4个数量级。对于氧气,计算值并不完全遵循渗透率的实验趋势,这很可能是因为在此温度下,某些聚合物处于玻璃态,因此以扩散为主。我们的研究还得出结论,较大的置信范围与计算出的亨利常数相关。通过研究几个因素(聚合物链的末端,空隙分布等),我们得出结论,大的置信度极限与热波动引起的聚合物构象变化密切相关,并且至少在微观上必须将其视为每个特征聚合物及其与溶质相互作用的性质。降低聚合物基质的迁移率以及控制自由(可占据)体积的分布将充当降低气体溶解度和扩散系数的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号