...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Long-range solvent effects on the orbital interaction mechanism of water acidity enhancement in metal ion solutions: A comparative study of the electronic structure of aqueous Mg and Zn dications
【24h】

Long-range solvent effects on the orbital interaction mechanism of water acidity enhancement in metal ion solutions: A comparative study of the electronic structure of aqueous Mg and Zn dications

机译:远程溶剂对金属离子溶液中水酸度增强的轨道相互作用机理的影响:Mg和Zn水溶液指示剂电子结构的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

We study the dissociation of water coordinated to a divalent metal ion center, M2+ = Mg2+, Zn2+ using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. First, the proton affinity of a coordinated OH- group is computed from gas- phase M2+(H2O)(5)(OH-), which yields a relative higher gas- phase acidity for a Zn2+- coordinated as compared to a Mg2+- coordinated water molecule, Delta pK(a)(gp) = 5.3. We explain this difference on the basis of a gain in stabilization energy of the Zn2+(H2O)(5)( OH-) system arising from direct orbital interaction between the coordinated OH- and the empty 4s state of the cation. Next, we compute the acidity of coordinated water molecules in solution using free-energy thermodynamic integration with constrained AIMD. This approach yields pK(a) Mg2+ = 11.2 and pK(a) Zn2+ = 8.4, which compare favorably to experimental data. Finally, we examine the factors responsible for the apparent decrease in the relative Zn2+- coordinated water acidity in going from the gas- phase (Delta pK(a)(gp) = 5.3) to the solvated (Delta pK(a) = 2.8) regime. We propose two simultaneously occurring solvation-induced processes affecting the relative stability of Zn2+(H2O)(5)(OH-), namely: ( a) reduction of the Zn 4s character in solution states near the bottom of the conduction band; (b) hybridization between OH- orbitals and valence-band states of the solvent. Both effects contribute to hindering the OH- --> Zn2+ charge transfer, either by making it energetically unfavorable or by delocalizing the ligand charge density over several water molecules.
机译:我们使用密度泛函理论(DFT)和从头算分子动力学(AIMD)模拟研究了配位至二价金属离子中心M2 + = Mg2 +,Zn2 +的水的离解。首先,由气相M2 +(H2O)(5)(OH-)计算出一个配位的OH-基的质子亲和力,与Mg2 +配位的Zn2 +-配位相比,它产生的气相酸性相对较高。水分子,δpK(a)(gp)= 5.3。我们根据配位的OH-和阳离子的空4s状态之间的直接轨道相互作用所产生的Zn2 +(H2O)(5)(OH-)系统的稳定能增益来解释这种差异。接下来,我们使用约束AIMD的自由能热力学积分计算溶液中配位水分子的酸度。这种方法产生的pK(a)Mg2 + = 11.2和pK(a)Zn2 + = 8.4,与实验数据相比具有优势。最后,我们研究了从气相(Delta pK(a)(gp)= 5.3)变为溶剂化(Delta pK(a)= 2.8)时,导致Zn2 +相对水酸度明显降低的因素。政权。我们提出了两个同时发生的溶剂化诱导过程,这些过程影响Zn2 +(H2O)(5)(OH-)的相对稳定性,即:(a)降低导带底部附近溶液态的Zn 4s特性; (b)OH-轨道与溶剂的价带态之间的杂交。两种作用都可能导致OH ---> Zn2 +的电荷转移,这在能量上不利,或者在多个水分子上使配体电荷密度离域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号