...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films
【24h】

Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films

机译:使用纳米晶TiO2和SnO2膜的染料敏化太阳能电池中的电荷传输与复合

获取原文
获取原文并翻译 | 示例
           

摘要

We report a comparison of charge transport and recombination dynamics in dye-sensitized solar cells (DSSCs) employing nanocrystalline TiO2 and SnO2 films and address the impact of these dynamics upon photovoltaic device efficiency. Transient photovoltage studies of electron transport in the metal oxide film are correlated with transient absorption studies of electron recombination with both oxidized sensitizer dyes and the redox couple. For all three processes, the dynamics are observed to be 2-3 orders of magnitude faster for the SnO2 electrode. The origins of these faster dynamics are addressed by studies correlating the electron recombination dynamics to dye cations with chronoamperometric studies of film electron density. These studies indicate that the faster recombination dynamics for the SnO2 electrodes result both from a 100-fold higher electron diffusion constant at matched electron densities, consistent with a lower trap density for this metal oxide relative to TiO2, and from a 300 mV positive shift of the SnO2 conduction band/trap states density of states relative to TiO2. The faster recombination to the redox couple results in an increased dark current for DSSCs employing SnO2 films, limiting the device open-circuit voltage. The faster recombination dynamics to the dye cation result in a significant reduction in the efficiency of regeneration of the dye ground state by the redox couple, as confirmed by transient absorption studies of this reaction, and in a loss of device short-circuit current and fill factor. The importance of this loss pathway was confirmed by nonideal diode equation analyses of device current-voltage data. The addition of MgO blocking layers is shown to be effective at reducing recombination losses to the redox electrolyte but is found to be unable to retard recombination dynamics to the dye cation sufficiently to allow efficient dye regeneration without resulting in concomitant losses of electron injection efficiency. We conclude that such a large acceleration of electron dynamics within the metal oxide films of DSSCs may in general be detrimental to device efficiency due to the limited rate of dye regeneration by the redox couple and discuss the implications of this conclusion for strategies to optimize device performance.
机译:我们报告了电荷传输和重组动力学的染料敏化太阳能电池(DSSCs)使用纳米晶体TiO2和SnO2膜的比较,并解决了这些动力学对光电器件效率的影响。金属氧化物膜中电子传输的瞬态光电压研究与氧化敏化染料和氧化还原对的电子复合的瞬态吸收研究相关。对于所有这三个过程,SnO2电极的动力学都快了2-3个数量级。这些更快的动力学的起源是通过将电子重组动力学与染料阳离子相关联的研究和薄膜电子密度的计时安培研究来解决的。这些研究表明,SnO2电极更快的重组动力学是由于在匹配的电子密度下电子扩散常数高了100倍,与这种金属氧化物相对于TiO2的陷阱密度低,以及300 mV的正迁移有关。 SnO2导带​​/陷阱态相对于TiO2的态密度。与氧化还原对的更快重组导致采用SnO2膜的DSSC的暗电流增加,从而限制了器件的开路电压。如通过该反应的瞬态吸收研究所证实的,与染料阳离子的更快的重组动力学导致通过氧化还原对显着降低染料基态的再生效率,并导致器件短路电流和填充的损失。因子。该损耗路径的重要性已通过器件电流-电压数据的非理想二极管方程分析得到证实。已显示出添加MgO阻挡层可有效减少氧化还原电解质的重组损失,但发现它不能充分延迟与染料阳离子的重组动力学,从而足以实现有效的染料再生而不会导致电子注入效率的损失。我们得出的结论是,由于氧化还原对染料再生速率的限制,DSSCs金属氧化物膜中电子动力学的如此大的加速通常可能会损害器件效率,并讨论该结论对优化器件性能的策略的意义。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号